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Abstract

The recent emergence of coronavirus disease (COVID-19) caused a continuous threat to humans. Currently,
the race for COVID-19 vaccines through laboratory tests has generated more than 180 vaccine candidates,
however the scientific community remains skeptical regarding their administration for the general
public. Plants are a rich source of medicinally active constituents that have long been used over the
years in aromatherapy and phytomedicine due to their biological properties including antiviral,

Keywords antimicrobial, antioxidant, anticancer, immunomodulatory and anti-inflammatory effects. Likewise,
COVID-19 evidence from in vitro studies and controlled clinical trials highlighted the health benefits of some
Plants vitamins, micronutrients, and trace elements in viral infections. The purpose of this article is to
Micronutrients

describe the current knowledge about micronutrients and phytochemicals that can help prevent and

Immune response

Antiviral activity !5 EOVID-10%

1. Introduction

The world is currently facing a pneumonia outbreak caused by the
new coronavirus (SARS-CoV-2). The disease can be asymptomatic
or present mild affection of the upper respiratory tract (Khan
et al., 2020; Subbarao and Mahanty, 2020). Patients with the most
severe forms of COVID-19 are often elderly and affected by acute
respiratory distress syndrome (Liu et al., 2020; Perrota et al.,
2020). SARS-CoV-2 mainly attacks the lower respiratory system to
cause viral pneumonia, but it may also affect the gastrointestinal
system, heart, kidney, liver, and central nervous system leading to
multiple organ failure (Zhu et al., 2020). Several combined
therapies have been used to treat complications associated to virus
infection (Fernandes et al., 2020; Sarkar et al., 2020), and more
than 180 vaccines are currently in development (Krammer, 2020),
however, until now, there has no specific and effective drug or
vaccine to treat COVID-19.

Plants provide a valuable and powerful resource of phytochemicals
components including phenols, flavonoids, volatile oil, etc., displaying
antiviral properties (Haslberger et al., 2020 ; Mani et al., 2020).
Existing evidences suggest that the consumption of plant-derived
regiments can strengthen the immune system and help to fight
against COVID-19 (Chojnacka et al., 2020; Fernandez-Quintela et al.,
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2020). Naturally occurring phytochemicals have the advantages of
low toxicity and high efficiency to inhibit virus proliferation and can
also regulate the host immune response (Cowan, 1999). Likewise,
adequate intake of vitamins A, B, C, D, E, zinc, and iron is essential to
maintain a strong immune system (Jayawardena et al., 2020).

This review aims to present an overview of coronavirus
morphology, biology, and pathogenesis with a particular focus on
mechanism of action of natural bioactive compounds including
vitamins, trace elements, flavonoids, phenolic acids, and alkaloids
against SARS-CoV-2 infection and replication and their role in
enhancing the immunity. These natural molecules were selected
based on their effectiveness against SARS-CoV-2 infection as well
as other RNA viruses including SARS-CoV, MERS-CoV, and influenza.

2. Mechanism of virus infection

Coronaviruses (CoVs) are positive-stranded RNA viruses with a
crown-like appearance under an electron microscope due to the
presence of spike glycoproteins on the envelope (Cascella et al.,
2020). Coronaviruses belong to the family Coronaviridae and are
divided into alpha (a-CoV), beta (B-CoV), gamma (y-CoV), and delta
(8-CoV) coronaviruses. The alpha and beta coronaviruses can
infect mammals, the viruses infecting humans are genetically
similar to f-CoV genus (Letko ef al., 2020). Structural analysis of
SARS-CoV-2 shows the virus as cylindrical with four specified
proteins encoded by the minor sections of the genome (Song et al.,
2018). These include membrane (M) protein, spike (S) protein,
envelope (E) protein, and nucleocapsid (N) protein (Figure 1). The
protein (S) is the greatest structure and makes distinct spikes on
the virus surface (Suhail ez al., 2020).
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SARS-CoV-2 into human respiratory epithelial cells (Cascella ef al.,
2020). Following the conjunction with the target receptor, the S1
subunit is bound to the peptidase domain of ACE2. Coronavirus
fuses its envelope with the host cell membrane through the
conformational change of S protein which is triggered by the target
receptor binding, pH acidification, and proteolytic cleavage by
endosomal proteases like transmembrane protease serine 2
(TMPRSS2) (Simmons et al., 2004; Millet and Whittaker, 2014).

The S protein is cleaved between S1 and S2 subunit and at the
conserved site up stream of the fusion peptide (S2') (Figure 2)
(Belouzard and Whittaker, 2009; Belouzard et al., 2012). After
cleavage, the fusion between the two membranes is completed by
the S2 portion (Suhail ef al., 2020).

Figure 1: Coronavirus virion structure

Corona virus - Photo credit: CDC/Alissa Eckert, MS; Dan Higgins, MAMS.
(Source: Khan et al., 2020: The COVID-19 pandemic: A scoping review.)

2.1 Virus attachment and entry

The major place of entry for viruses into the body is the respiratory
tract (Subbarao and Mahanty, 2020). Infection is initiated by
interaction of the viral particle with specific proteins on the cell
surface. After initial binding with receptor, enveloped virus fuse its
envelope with host cell membrane to deliver its nucleocapsid to
the target cell. The spike (S) protein plays a role in entry by
mediating receptor binding and membrane fusion (Belouzard
et al., 2012).

2.2 Role of spike protein

The spike glycoprotein (S) plays a primary role in viral attachment
and entry, cell tropism, and pathogenesis (Belouzard ez al., 2012).
The S protein contains two functional domains: the subunit (S1),
an extracellular receptor-binding domain (RBD) responsible for
virus binding, and the subunit (S2) anchored to the membrane
which contains sequences responsible for membrane fusion
(Holmes, 2003; Hofmann and P6hlmann, 2004; Hoffmann et al.,
2020). Membrane fusion requires spike (S) protein cleavage and
activation by host cell proteases (Hoffmann et al., 2020).

The subunit S1 binds to the host cell receptor via two independent
subdomains, an N-terminal domain (NTD) and C-terminal domain
(CTD), capable of binding variety of proteins and sugars (Belouzard
et al., 2012). The S2 subunit contains a fusion peptide with a
transmembrane domain and a cytoplasmic domain which is highly
conserved. While, spike receptor-binding domain (RBD) presents
only 40% sequence identity with other SARS-CoVs.

RBD represents a binding site for the human angiotensin-converting
enzyme 2 (ACE2) receptor and has a pivotal role in viral infection
and pathogenesis (Abajo ef al., 2020). ACE2 are metallopeptidase
receptors present in every human organ, including lung (principally
type 1l alveolar cells), heart, intestinal epithelium, kidney, vascular
endothelium, and smooth muscle cells (Letko et al., 2020), ACE2
receptors are considered as an entry site for SARS-CoV and

S1 subunit S2 subunit
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Figure 2: Schematic representation of the SARS-CoV spike protein (S).

The S1 subunit of S protein, containing RBD, responsible for specific
recognition and binding of the target receptors. The S2 subunit, is in
charge of the membrane fusion, contains the putative fusion peptide
(FP) and the heptad repeat (HR1 and HR2), the transmembrane domain
(TM). S1/S2 and S2’ protease cleavage sites.

Depending on the specific coronavirus, RBD is used to recognize
different functional receptors. The presence of an amino acid site
(polybasic site) within the spike protein allows the functional
processing by the human furin protease. This process allows the
exposure of the fusion sequences and therefore the fusion of the
viral and cell membranes, then the virus enters into the host cell
(Cascellaet al., 2020).

The importance of disulfide thiol balance in the viral entry of
SARS-CoV-2 has been also demonstrated. Thiol and disulfide
groups could act as electron donors and acceptors, respectively
(Lavillette et al., 2006).

2.3 Virus replication

During virus infection, viral genetic material is fully released into
the cytoplasm where takes place the replication and transcription
process mediated by the replication/transcription complex (RTC)
(Boopathi et al., 2020). The single stranded RNA is translated from
open reading frame la/b into ppla and pplab (viral replicase
polyproteins), and then cleaved into nsps (Yesudhas et al., 2020).
Viral replicase polyproteins use the genome as a template to
generate full-length negative sense RNAs, themselves serving as
templates to generate additional full-length genomes (Song et al.,
2004). RNA polymerase produces upon transcription a series of
subgenomic mRNAs translated into viral structural proteins
S, E, N and M (Figure 3).

Viral proteins and RNA genome are assembled into new virions in
Golgi and endoplasmic reticulum (ER). Indeed, the encapsidation
of replicated genomes by N protein forms nucleocapsids in the
cytoplasm, and they coalesce within the ERGIC (ER, Golgi



intermediate compartment) membrane and then assembled into new
virions. The newly formed virions are transported to the cell
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membrane in smooth walled vesicles and then outside secreted via
exocytosis, so that can infect other cells (Figure 3).
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Figure 3: Schematic representation of SARS-CoV-2 attachment, internalization, and replication.

ACE2: angiotensin-converting enzyme 2, ERGIC: endoplasmique-reticulum-Golgi intermediate compartment, ORF: open reading frame,
NSPs: non-structural protein. TMPRSS2: Transmembrane protease serine 2.

2.4 Pathogenesis of SARS-CoV-2

The mechanism of virulence of SARS-CoV-2 is mainly associated to
the function of the nsps and structural proteins. Recent evidence
showed that nsp is able to block the host innate immune response
(Lei et al., 2018). Another mechanism is the severe inflammatory
response induced by the viral infection in the lung as well as other
organs (Lei et al., 2018). In fact, once the SARS-CoV-2 gains access
inside the cells, it activates T lymphocytes and induces an intense
immune response with subsequent release of cytokines which can
cause real damage if they are not controlled (Song ez al., 2018). As
well, the SARS-CoV-2 utilizes its structural proteins to gain entry
into the host cell cytosol as well as suppress signaling pathways
particularly with the Toll-like receptors (TLR) (Weiss and Navas-
Martin, 2005).

3. Inflammatory responses associated to COVID-19

Accumulating evidence from epidemiological and clinical studies
demonstrated that SARS-CoV-2 infection causes severe acute
respiratory illness associated with massive inflammatory responses
and cytokine storm secretion. Among these cytokines, tumor
necrosis factor (TNFa) and interleukin 1 (IL-1) are of considerable
importance (Borthwick, 2016; Conti ef al., 2020; Kritas et al.,
2020).

The activation of toll like receptor (TLR) after SARS-CoV-2 binding
induces a biochemical cascade that causes the secretion of pro-IL-1
cleaved by caspase-1 into a mature fragment (IL-1), followed by
the activation of the inflammasome (Chen et al., 2019; Conti et al.,
2020; Tay et al., 2020). As well, SARS-CoV-2 entry, via, ACE2
activates pro-inflammatory cytokines including IL-6, TNF-a, and
inflammasome (Conti et a/., 2020; Paniri and Akhavan-Niaki,
2020). Recently, increasing studies have reported that interleukin-
6 (IL-6) and NOD-like receptor protein 3 (NLRP3) inflammasome
are the main cause of the inflammatory cytokine storm and
pathological complications in infected patients with SARS-CoV-2
(Paniri and Akhavan-Niaki, 2020; Tay et al., 2020).

Previous in vitro cell experiments have shown delayed secretion of
pro-inflammatory cytokine and chemokine (IL-6, TNF-a, IL-1B,
IL-8, MCP-1, CCL2, CCL5, and IFNs) in respiratory epithelial cells,
dendritic cells, and macrophages at the initial stage of SARS-CoV
infection, then the release of cytokines and chemokines is
enhanced by activated macrophages and other recruited
lymphocytes (Cheung et al., 2005; Law et al., 2005; Lau et al.,
2013).

Several other pro-inflammatory cytokines are produced following
SARS-CoV-2 infection, notably CC chemokine ligand 2 (CCL2),
C-X-C motif chemokine ligand 2 (CXCL2), CCL8, CXCLI, IL33,
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CCL3L1 in bronchoalveolar lavage fluid (BALF), and IP-10, tumor
necrosis factor superfamily 10 (TNFSF), tissue inhibitors of
metalloproteinases (TIMP)1, C5, IL18, amphiregulin, neuregulinl,
and IL10 in peripheral blood mononuclear cells (PBMC), indicating
sustained inflammation and cytokine storm in the patients.
Pathway analysis of PBMC transcriptome revealed that
lymphopenia in COVID-19 patients was more likely caused by the
activation of apoptosis and P53 signaling pathway in lymphocytes
(Xiong et al., 2020).

Zhou et al. (2020) demonstrated that BALF of patients with severe
COVID-19 was enriched in CCL2 and CCL7, which are considered
the most potent chemokines for the recruitment of CC-chemokine
receptor 2-positive (CCR2+) monocytes. Likewise, Liao et al.
(2020) found increased proportions of mononuclear phagocytes
(MNPs) in BALF (up to 80% of total BALF cells in patients with
severe COVID-19 versus only 40% and 60% of total BALF cells in
healthy or patients with moderate COVID-19, respectively).

Similarly, in severely affected patients, lymphopenia and
interstitial pneumonia with elevated levels of pro-inflammatory
cytokines, including IL-2, IL-6, IL-7, IL-1, G-CSF, IP-10, MCP-1,
MIP-1a and TNFa can be observed (Dong ef al., 2020a ; di Mauro
et al., 2020). However, Huang et al. (2020) detected elevated
expression of IL-1 B, IFN-y, IP-10 and monocyte chemo-attractive
protein 1 (MCP-1) in patients with COVID-19. These inflammatory
cytokines may activate the T-helper type 1 (Thl) cell response
and play a key event in the activation of specific immunity (Huang
et al., 2020; Marchingo et al., 2020). Moreover, these cytokines
induce the recruitment and activation of neutrophils, NK cells, and
adaptive immune T cells, with additional production of pro-
inflammatory cytokines, causing consequently cytokine storm and
tissue damage (Lingeswaran et al., 2020). While, Chen et al. (2020)
recorded high levels of cytokines secreted by Th2 cells such as
IL-4 and IL-10 in patients with COVID-19 responsible for inhibiting
the inflammatory response.

SARS-CoV-2 induces a particular signature and differs from other
coronaviruses in its capacity to replicate within pulmonary tissue.
The virus can counteract the antiviral effects of IFN-I and IFN-III,
activate innate responses with subsequent production of cytokines
that regulate adaptive immunity (Garcia, 2020).

A fatal inflammatory response and acute respiratory distress
syndrome may be seen in patients with SARS-CoV-2 following
rapid viral replication. This phenomenon can be explained by the
cell lysis induced by over activation of the complement system
following an interaction of the nucleocapsid dimers of the
coronavirus released with the serine proteases associated to the
lectin bound to mannose (Tok and Tatar, 2017; Shurin et al., 2020).
Moreover, Dong et al. (2020b) suggest that the etiology of severe
COVID-19 infection may be haemophagocytosis or macrophage
activation syndrome.

4. Ocxidative stress and SARS-CoV infection

During COVID-19 pandemic, very old patients and centenarians
were more vulnerable to virus infection. Several in vitro and
in vivo studies have demonstrated that age-related diseases are

correlated with an elevated oxidative status (Schottker et al., 2015;
Schoéttker et al., 2016 ; Gao et al., 2019). Emerging data and the
clinical reports suggest that oxidative stress contributes to viral
pathogenesis of SARS-CoV-2 (Cecchini and Cecchini, 2020;
Delgado-Roche and Mesta, 2020). In fact, increases in ROS
generation during aging lead to functional alterations, pathological
conditions, and even death (Hagen, 2003; Kregel and Zhang, 2006).

Lin et al. (2006), reported that SARS-CoV 3C-like protease caused
a significant increase in ROS production in HL-CZ promonocyte
cells. The authors indicated that SARS-CoV-3C-like protease activates
NF-kB-dependent reporter gene, which induced apoptosis of
human promonocyte cells. Other studies have also reported that
ROS mediated apoptosis in viral infections, such as Japanese
encephalitis virus (Yang et al., 2010) and influenza virus (Uchide
et al., 2002). Shao and coworkers (2006) identified that genes
encoded in mitochondria, the main origin of intracellular free
radicals production, and some genes responding to oxidative
stress wes upregulated in peripheral blood mononuclear cells of
convalescent SARS-CoV patients.

ACE2 receptor emerges as a key regulator in oxidative stress-
mediated SARS-CoV-2 infection. ACE2 is a membrane-bound
protein responsible for the degradation of Ang II (Zheng et al.,
2020). The latter enhances the production of ROS through enhancing
NADPH oxidase activity, as a result, cysteine residues are oxidized
to form disulfides, which in turn increase the affinity of SARS-CoV-2
S proteins for the ACE2 receptor, and therefore, increase the severity
of COVID-19 infection (Busse et al., 2020; Hati and Bhattacharyya,
2020).

SARS-CoV-2 infection causes acute lung injury and aggressive
inflammatory response with excessive production of cytotoxic
mediators such as ROS and RNS, tumor necrosis factor o (TNFa),
interleukins (IL-2, IL-6, IL-7), interferons (IFN-y), granulocyte
macrophage colony-stimulating factor (GM-CSF), monocyte
chemotactic protein 3 ( MCP-3), interferon-y-inducible protein 10
(IP-10) (Kaur et al., 2020) which are the source of oxidative stress
associated with acute lung injury (Valavanidis et al., 2013).

During a SARS-CoV-2 infection, human erythrocytes are
particularly prone to viral invasion and the pathophysiology of
COVID-19 because of their high content of iron which is a critical
redox catalyst for diverse viral processes including genome
replication and protein synthesis (Abraham, 2020). Therefore, the
lysis of erythrocytes leads to an increase of inflammatory cytokines,
free heme, and free iron. A meta-analysis study of 1210 COVID-19
patients showed a dramatical decrease of hemoglobin levels of 7.1
g/l or even 5.9 g/l in severe cases (Lippi and Mattiuzzi, 2020). In
fact, erythrocytes lysis increases the amount of extracellular Hb
which in the highly oxidative environment leads to MetHb formation
and the release of free heme (Dutra and Bozza, 2020). The
prooxidant effects of free Hb are mainly attributed to heme release
from oxidized Hb. Free heme can react with lipids in cellular
membranes, inducing lipid peroxidation, and increase cell
permeability leading to hemolysis (Bellik and Iguer-Ouada, 2016).
Moreover, free Hb can react with NO to generate peroxynitrite



(ONOO") which in turn generates reactive hydroxyl radical (HO*)
by the reaction with iron. HO" can also cause membrane lipid
peroxidation and cellular damage (Halliwell and Gutteridge, 1999;
Authen and Davis, 2009). In addition, it has been demonstrated
that iron induces blood coagulation via hydroxyl radicals which
convert soluble plasma fibrinogen into abnormal fibrin clots in the
form of dense matted deposits resistant to enzymatic degradation
(Pretorius et al., 2013).
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5. Phytochemicals as potential agents against coronaviruses

Plants have been the basis of traditional medicine and are a rich
source of pharmacologically-active compounds used to develop new
drugs. A wide range of bioactive components have been shown to
modulate inflammatory responses. Table 1 summarizes the most
studied and well-known phytochemicals with antiviral activity and
their cellular and molecular mechanism. It is worth noting that several
other reports demonstrating similar results are not represented here.

Table 1: Antiviral activity of selected phytochemicals against coronaviruses

Plant Bioactive compound Virus type |Mechanism Effect/dose Reference
Green tea (Camellia |Catechins (catechin; epigallo-, | SARS-CoV-2|Inhibition of major protease n.a. Ghosh et al.
sinensis) -epi, - gallo, -catechin gallate ; (H-bonds with amino acids of (2020)
-epigallo, -epi, -gallo catechin) catalytic site)
Brown algae Phlorotannins (8,8’-Bieckol, |SARS-CoV-2|[Inhibition of major protease (H-bonds |n.a. Gentile et al.
(Ecklonia cava) 6,6’-Bieckol, Dieckol) with His,, and Cys ,, and hydrophobic (2020)
interaction with Leu, , Met, , Met,,
Metl ., Leul, and Leul,)
Marine sponge Pseudotheonamide D and C SARS-CoV-2|Inhibition of major protease n.a. Gentile et al.
(Theonella swinhoer) (Covalent bond with Cys, ,. and (2020)
hydrophobic interaction with Leu,,
Met,,, Phe , and Leul)
Paper birch (Betula Papyriflavonol A SARS-CoV |Inhibition of proteases (3-chymotrypsin- |IC50: 3.7uM Park et al.
papyrifera) like protease and papain-like protease) (2017)
Paulownia (Paulownia | Geranylated flavonoids SARS-CoV [Inhibition of papain-like protease [IC50: Cho et al.
tomentosa) (tomentin A, B, C, D and E) 5.0-14.4 uM (2013)
Chinese rhubarb Emodin (6-methyl-1,3,8- SARS-CoV |Blocks the binding of spike protein |1 to 10 pg/ml Ho et al.
(Rheum officinale) and |trihydroxyanthraquinone) and angiotensin-converting enzyme (2007)
polygoni multiflori 2 to host cells
(Polygonum
multiflorum)
Flavonoids rich plants|Herbacetin (flavonol), rhoifolin| SARS-CoV |Inhibition of 3-chymotrypsin-like |IC50: Jo et al.
and pectolinarin (flavones) protease (H-bonds with amino acids |27.5-37.8 uM | (2020)
of catalytic site)
Chinese mahogany Quercetin SARS-CoV [Inhibition of virus replication IC50:500 pg/ml | Chen et al.
(Toona sinensis) (2008)
Red spider lily Lycorine SARS-CoV |Inhibition of cytopathic effect EC50: 2.4 pg/ml| Li et al.
(Lycoris radiate) (2005)
Brown algae Dieckol SARS-CoV [Inhibition of 3-chymotrypsin-like |IC50: 2.7 uM Park et al.
(Ecklonia cava) cysteine protease (H-bond with (2013)
catalytic dyad : His, and Cys,,;)
Plants rich in Flavonoids: Herbacetin, MERS CoV [Inhibition of 3-chymotrypsin-like [IC50: 36-67 uM | Jo et al.
flavonoids isobavachalcone, quercetin 3 3 cysteine protease (H-bonds and (20 uM) (2019)
d glucoside and helichrysetin hydrophobic interactions)
Babchi Flavonoids: Bavachinin, SARS-CoV |Inhibition of papain-like protease |IC50: 4.2 and Kim et al.
(Psoralea corylifolia) |neobavaisoflavone, 38.4 uM (2014)
isobavachalcone, 4’-O-
methylbavachalcone,
psoralidin and corylifol A.
Ashitaba Xanthoangelol E SARS-CoV |Inhibition of 3-chymotrypsin-like [IC50: 11.4 uM | Park et al.
(Angelica keiskei) protease (H-bonds with His,,, Ser,,, |IC50: 1.2 uM [ (2016)
and Cys ,.)Inhibition of papain-like
protease (H-bonds with His .. and
Hism)
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Plant Bioactive compound Virus type [Mechanism Effect/dose Reference
Woad Indigo SARS-CoV [Inhibition of 3-chymotrypsin-like [IC50: 37.3 uM | Lin et al.
(Isatis indigotica) Sinigrin protease (300 pM) (2005)
Beta-sitosterol 1C50: 50.3 uM
Aloeemodin (121 pM)
Hesperetin IC50: 47.8 uM
Daidzein (115 pM)
1C50: 35.7 uM
(132 uM)
IC50: 18.1 uM
(60 uM)
IC50: 6.8 uM
(105 uM)
Plants rich in Quercetin-3-B-galactoside SARS-CoV |Inhibition of 3-chymotrypsin-like [42.8 pM Chen et al.
anthocyanins protease (H-bonds with Gln, ) (2006)
Coniferous tree Amentoflavone SARS-CoV |Inhibition of 3-chymotrypsin-like [IC50: 8.3 uM Ryu et al.
(Torreya nucifera) protease (Interaction with His,, (14 uM) (2010a)
LeuMl’ G1n189&192 and VallR())
Plants rich in Quercetin, epigallocatechin SARS-CoV [Inhibition of 3-chymotrypsin-like |IC50: 73, 73 Nguyen et al.
flavonoids gallate and gallocatechin protease ( Hydrophobic interaction |and 47 pM (2012)
gallate with Met, ., Glu, ., Asp ., Arg .. and
Glnly; H-bounds with His, , Tyr,,,
Leul,, Gly,,,, Ser,,,, His,;, and Glu, )
Baikal skullcap Scutellarein SARS-CoV |Inhibition of NTPase/helicase IC50: 0.86 uM | Yu et al.
(Scutellaria (Interaction with Asn,, Tyr, and (2012)
baicalensis) Arg )
Tea (Camellia (-)-Catechin gallate and (-)- SARS-CoV |Inhibition of nucleocapsid protein |50uM Roh et al.
sinensis) Gallocatechin gallate activity (2012)
Bitter orange (Citrus |Hesperidin SARS-CoV-2 | Inhibition of 3-chymotrypsin-like |n.a Wu et al.
aurantium) protease and blocks the binding of (2020)
angiotensin-converting enzyme 2
to Spike-receptor binding domain
Citrus fruits Naringenin SARS-CoV-2 | Inhibition 3-chymotrypsin-like n.a. Tutunchi et al.
protease and reduction of angiotensin (2020)
converting enzyme activity
Plants riche in Theaflavins, hesperidin, SARS-CoV-2 | Inhibition of RNA replication n.a. Singh et al.
phenolic compounds |quercetagetin and myricetin (Binding to RNA-dependent RNA (2020)
polymerase)
Bupleurum spp., Saikosaponin B2 SARS-CoV | Prevent viral adsorption and IC50: 1.7 uM Cheng et al.
Heteromorpha spp. penetration into cell hosts (20006)
and Scrophularia
scorodonia
Prunella vulgaris and | Tetra-O-galloyl-p-d-glucose SARS-CoV |Prevent viral penetration into cell |EC50:4.5 and | Yi et al.
Saussurea lappa and luteolin hosts 10.6 pM (2004)
Alder Hirsutenone, rubranoside and |SARS-CoV |Inhibition of 3-chymotrypsin-like |IC50: 4.1, 7.2 | Park et al.
(Alnus japonica) curcumin protease and 5.7 pM (2012a)
Burra gokharu Terrestrimine, terrestriamide, |SARS-CoV |[Inhibition of 3-chymotrypsin-like |IC50:15.8, 21.5| Song et al.
(Tribulus terrestris) N-trans-feruloyloctopamine protease and 26.6 uM (2014)
Calophyllum blancoi |Blancoxanthone and HCoV 229E |/ EC50% : 3 and | Shen et al.
pyranojacaeubin 15 mg/ml (2005)
Regel’s threewingnut |Iguesterin, pristimerin, SARS-CoV |Inhibition of 3-chymotrypsin-like [IC50: 2.6, 5.5, | Ryu et al.
(Tripterygium regelii) |tingenone and celastrol protease (Interaction with Cys,,. s |9.9 and 10.3 pM| (2010b)
Glnlss&mw Glym’ Hlsl(m; Serm and
Thr24&25
Assam indigo Tryptanthrin SARS-CoV |Inhibition of 3-chymotrypsin-like |IC50: 1.25 pM | Narkhede
(Strobilanthes cusia) protease (Interaction with Ile,, et al. (2020)
Val , and Gln, )
Red sage Tanshinone I and SARS-CoV |Inhibition of 3-chymotrypsin-like |[IC50: 0.7 and Park et al.
(Salvia miltiorrhiza) |dihydrotanshinone I protease 1.2 uM (2012b)




6. Roles of essential oils

Essential oils (EOs) are valuable natural products that have
been used over the years in aromatherapy and phytomedicine due
to their antiviral, antibacterial, antifungal, antioxidant,
immunomodulatory and anti-inflammatory effects (Asif et al.,
2020; Astani and Schnitzler, 2014; Gilling et al., 2014).

Most research studies on the antiviral activity of the essential oils
have been conducted towards enveloped viruses. Still, little works
were performed on non-enveloped viruses (Gilling et al., 2014).

EOs could act by destabilizing virions, protecting host cell or
inhibiting replication once the virus invades the host cell (Astani
and Schnitzler, 2014). Five mechanisms of action induced-antiviral
activity of essential oils have been described: direct actions on free
viruses, inhibition of steps involved in virus attachment, penetration,
intracellular replication, and release from host cells, and inhibition
of vital enzymes (Schnitzler et al., 2010; Asif et al., 2020; Ma and
Yao, 2020).

6.1 Direct actions on free viruses

Several studies have shown the ability of many EOs to disrupt
biological membranes as well as viral envelopes (Siddiqui ef al.,
1996; Nguefack et al., 2004; Xu et al., 2008). Due to their lipophilic
nature (Wink, 2020), EOs are able to insert nonspecifically into
the viral envelope lipid bilayer which can result in the alteration
of normal membrane fluidity (Ben-Shabat et al., 2020; Wink,
2020). Membranes can also be ruptured if the EOs are present at
higher concentrations (Wink, 2020). Siddiqui et al. (1996)
demonstrated that oregano oil (Origanum vulgare) and clove oil
(Syzygium aromaticum) destroyed human pathogen herpes
simplex virus type 1 (HSV-1) envelope. Likewise, Brochot et al.
(2017) reported that 1,8-cineole, derived from eucalyptus oil,
damaged the envelope structures of the free Influenza A virus and
could inactivate this virus. Reichling et al. (2006) found that
monoterpenes increased the fluidity and permeability of the
cytoplasmic membrane and disrupted the order of membrane
proteins.

Moreover, the antiviral activity of EOs may be the result of a
disruption or interference with the viral membrane proteins
involved in the attachment of host cells (Schuhmacher et al,,
2003). Mediouni et al. (2020) showed that carvacrol obtained
from oregano was effective at blocking the entry of HIV-1 virus
into the host system by inhibiting the fusion of host viral cells via
depletion of viral cholesterol from HIV-1 envelope membrane.

6.2 Inhibition of virus attachment and penetration

In vitro and in vivo results showed that the total amount of
pulmonary nuclear factor-erythroid 2-related factor 2 (Nrf2) and
the nuclear translocation of Nrf2 was high in treated rats with
diallyl sulfide (DAS), the main sulfur component of Garlic essential
oils (Ho et al., 2012; Dziri et al., 2014). McCord et al. (2020)
observed that potent activation of Nrf2 causes a decrease in the
expression of ACE2 and TMPRSS2 mRNA in HepG2 cells of
human hepatic origin. Based on these findings, it has been
proposed that Garlic essential oils and their isolated constituents,
especially DAS, have the potential to prevent entry of viruses into
host cells (Asif et al., 2020). Similarly, the results obtained by
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Thuy et al. (2020) using molecular docking technique showed
that 17 organosulfur compounds, representing 99.4% of the Garlic
essential oil, have strong interactions with the amino acids of the
ACE2 protein and the main protease PDB6LU7 of SARS-CoV-2.
Senthil Kumar ef al. (2020) examined the ACE2 inhibitory effects
of major constituents of Geranium and Lemon essential oils,
namely; citronellol (50 uM), geraniol (50 uM), limonene (50 uM),
and neryl acetate (50 uM). The results showed that these
compounds reduced the ACE2 levels from 18.0 ng/ml (control) to
7.67 ng/ml, 10.44 ng/ml, 12.92 ng/ml, and 16.63 ng/ml, respectively.

In silico study showed that isothymol, thymol, limonene,
p-cymene, and y-terpinene from Ammoides verticillata
essential oil could have inhibitory effect on ACE2. The study
revealed also that isothymol, a major component of the plant,
could be a very effective inhibitor of the enzyme ACE2 (Abdelli
et al., 2020). Another in silico study reported that thymoquinone,
the main compound of Nigella sativa essential oil, would be the
best candidate drug that may inhibit protease SARS-CoV-2 and ACE2
(Sekiou et al., 2020).

6.3 Inhibition of intracellular replication

Recent studies performed by the use of molecular docking to
investigate the effects of two components of Eucalyptus essential
oil (jensenone and 1,8-cineole) on viral proteinase (Mpro/3CLpro)
showed that 1,8-cineole can bind with Mpro via hydrophobic
interactions, hydrogen bonding interactions, and strong ionic
interactions and thus inhibit viral reproduction (Sharma and Kaur,
2020a; Sharma and Kaur, 2020b).

Kulkarni and coworkers (2020) carried out in silico study and
found that anethole, cinnamaldehyde, carvacrol, geraniol, cinnamyl
acetate, L-4-terpineol, thymol, and pulegone from essential oils
inhibit the S1 subunit of S protein and that cinnamaldehyde had
more favorable interaction points at the binding site than other
compounds. Silva et al. (2020) studied 171 essential oil
components against protease SARS-CoV-2 (SARS-CoV-2 Mpro),
endoribonucleoase SARS-CoV-2 (SARS-CoV-2 nspl15/NendoU),
SARS-CoV-2 ADP-ribose-1"-phosphatase (SARS-CoV-2 ADRP),
RNA-dependent RNA polymerase of SARS-CoV-2 (SARS-CoV-2
RdRp), the spike protein binding domain SARS-CoV-2 (SARS-CoV-2
rS) and human angiotensin converting enzyme (hACE2). It was
found that the best docking ligands for the SARS-CoV target
proteins were (E, E)-o-farnesene, (E)-B-farnesene, and (E, E)-
farnesol.

6.4 Other effects of essential oil

There are several reports showing the ability of essential
oils to modulate immune system. The protective effects of
cinnamaldehyde and eugenol in lipopolysaccharide (LPS)-
induced acute lung injury has been reported (Huang and Wang,
2017; Barboza et al., 2018). Cinnamaldehyde treatment inhibits
neutrophils, macrophages, and total cell number in the
bronchoalveolar lavage fluid and decreased the levels of
inflammatory cytokines such as TNF-a, IL-6, IL-13 and IL-1B,
respectively (Huang and Wang, 2017). Similarly, the levels of
interleukin-1, interleukin-23, and tumor necrosis factor o (TNF-
a) decreased considerably in treated rats with menthol (Rozza
et al., 2014; Bastaki et al., 2018). Eugenol was also found to
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inhibit the recruitment of leukocytes into the lung and
downregulated the expression of pro-inflammatory cytokines
(IL-6 and TNF-a) (Barboza et al., 2018). Furthermore,
monoterpenes thymol, carvacrol and p-cymene reduced the
positive cells to NF-xB in lung which consequently reduced
inflammatory response (Edwards et al., 2009). In addition, Games
et al. (2016) demonstrated that the treatment with thymol,
carvacrol and p-cymene isolated from essential oil of Lippia
sidoides Cham. (Verbenaceae) leaves reduced alveolar
enlargement, macrophage recruitment, cytokine levels (IL-1, IL-
6, IL-8, and IL-17) in bronchoalveolar lavage fluid, and collagen
fibers, MMP-9 as well as p-65-NF-kB-positive cells in lung
parenchyma.

In vitro and ex vivo studies have demonstrated marked
immunomodulatory properties of both Eucalyptus essential oil
and its active ingredient, namely eucalyptol. Treatment with
Eucalyptus essential oil and its main compound eucalyptol
reduced the release of pro-inflammatory cytokines by monocytes
and macrophages, without affecting their phagocytic properties
(Sadlon and Lamson, 2010; Juergens et al., 2020).

7. Roles of oligoelements and vitamins

Many vitamins and oligoelements are essential for the proper
functioning of the immune system (Wintergerst et al., 2007),
because of their anti-inflammatory, antioxidant, and antiviral
properties (Beard et al., 2011). The efficiency of innate and
adaptive immune responses depends on the level of these
elements. Below are described some of the most studied vitamins
and trace elements that have shown promising effects against
COVID-19.

7.1 Vitamin C

Vitamin C is one of the most used therapeutic agents in the
treatment of human diseases. It is considered as an antioxidant
and an enzymatic cofactor for many physiological reactions in
the body, such as hormone production, collagen synthesis, and
immune potentiation (Kim et al., 2013). It has been proposed as
a promising therapeutic approach for reducing the susceptibility
of people at high risk to lower respiratory infection under certain
conditions (Hemild, 1997). Vitamin C is essential for innate and
adaptive immunity. /n vitro study showed that vitamin C
supplementation improved the proliferation and activation of
lymphocytes in dose dependent manner (Huijskens ez al., 2014).
Liugan and Carr (2019) reported that neutrophil’s chemotaxis,
phagocytosis, and oxidative burst activity are enhanced in the
presence of vitamin C. It also displayed specific epigenetic
characteristics on immune cells such as dendritic cells, monocytes/
macrophages, T cells, NK cells (Ang et al., 2018). Treatment with
vitamin C reduced pro-inflammatory cytokines TNF, IL-6, and
IL-1P. Administration of 1 g/day vitamin C was shown to enhance
PBMC, IL-10, IL-1, and TNF-a following stimulation with LPS
(Jeng et al., 1996; Canali et al., 2014).

Interestingly, it has been demonstrated that intravenous
administration of vitamin C high-dose reduces cytokine storm
in acute respiratory distress syndrome, improves immune system
function, and increases antiviral properties during SARS-CoV-2
infection (Boretti and Banik, 2020). Similarly, Cheng (2020)

pointed out that intravenous administration of early and adequate
dose of vitamin C can be used to reduce the mortality and morbidity
due to COVID-19.

7.2 Vitamin E

Vitamin E is a potent fat-soluble antioxidant capable of modulating
host immune functions (Moriguchi and Muraga, 2000). Vitamin E
is essential for the humoral and innate immune systems. In fact,
the scavenger properties of vitamin E gives them the ability to
reduce oxidative stress, protect polyunsaturated fatty acids
(PUFA) and immune cells against oxidation and also to exert anti-
inflammatory effects. But there are very few reports regarding
the use and/or dosage of vitamin E as a prophylactic or
therapeutic agent against COVID-19 (Fernandez-Quintela et al.,
2020). Combination of vitamin E with vitamin C should be
considered in clinical trials. de la Fuente et al. (2008) found that
supplementation of the diet of elderly men and women
with 200 mg/day vitamin E, in combination with vitamin C,
enhanced phagocytic functions of polymorphonuclear.

7.3 Vitamin D

Vitamin D, a fat soluble vitamin, plays an important role in
modulating both innate and adaptive immune responses (Aranow,
2011). Previous studies have shown that vitamin D increased
chemotaxis, autophagy, and phagolysosomal fusion of innate
immune cells (Liu ef al., 2007; White et al., 2010). Vitamin D can
also enhance the antimicrobial activity of macrophage and
monocyte keratinocytes.

Vitamin D exerts its anti-inflammatory effects by suppressing the
production of pro-inflammatory cytokines such as IFN-y, IL-6, IL-
2, and TNF-a (Xie et al., 2015; Carvalho et al., 2017). It is strongly
involved in respiratory homeostasis by stimulating the expression
of antimicrobial peptides and by interfering with replication of
respiratory viruses (Zdrenghea ef al., 2017). Moreover, vitamin D
preserves tight junctions, disrupts enveloped viruses by inducing
cathelicidin and defensins, and prevents the cytokine storm that
leads to pneumonia (Muscogiuri et al., 2020). Recently, randomized
controlled trials showed that high-dose vitamin D supplementation
improved the health status of mechanically ventilated critically ill
patients (enhancing the capacity of blood for oxygen transport and
increasing hemoglobin levels) (Han ez al., 2016; Smith et al., 2018).

Among the consequences of SARS-CoV-2 infection, the decreased
levels of circulating vitamin D. Vitamin D receptors are highly
expressed by several immune cells in particular monocytes, T and
B lymphocytes. Therefore, vitamin D deficiency is associated with
increased risk of respiratory viral infection (Fernandes ez al., 2020).
Ilie and collaborators (2020) have studied the role of vitamin D in
the prevention of COVID-19 infection and mortality among 20
European countries. They found a negative correlation between the
level of vitamin D and the number of COVID-19 cases, as well as
COVID-19 mortality.

7.4 Zinc

Zinc is an important trace element which plays a pivotal role in
growth, development, and the maintenance of the immune system
(Prasad, 2013; Read ef al., 2019). It increases activity of
macrophages, production of immunoglobulins and cytolysis of
natural killer (Shankar and Prasad, 1998).



Zn has a direct action on viruses, such as influenza and coronavirus,
maybe through inhibition of RNA-dependent RNA polymerase or
by inhibiting the formation of the viral coating and processing of its
structural components (Read et al,, 2019). Zn interacts with
interferon-lambda3 binding to IFNL receptor 1 on HCV and
influenza (Read et al., 2017). Zhang and Liu (2020) confirmed that
the combination of zinc and pyrithione at low concentrations
contributes to the reduction of SARS-CoV replication.

Administration of 75 mg of zinc per day has been shown to alleviate
symptoms of illness in patients with viral infections (Singh and
Das, 2013). It has been suggested that zinc intakes of 30-50 mg per
day might aid control of RNA viruses including influenza and
coronavirus (McCarty and DiNicolantonio, 2020). Xue et al.
(2014) demonstrated a synergistic effect of chloroquine with zinc
in terms of cytotoxic effect on human cancer cells, this reinforces
the fact of combining between the antimalarial and zinc for other
conditions such as viral infections.

7.5 Selenium

Selenium is an essential oligoelement, which plays an important
role in multiple metabolic reactions in the organism (Prabhu and
Lei, 2016). It is a cofactor of many enzymes such as glutathione
peroxidase or thioredoxin reductase and exerts its functions linked
with protein forming selenoprotein (Duntas and Benvenga, 2015).
It has antioxidant and immune properties. Adequate levels of
selenium can reduce inflammation by decreased expression of
pro-inflammatory mediators such as cytokines, the redox-sensitive
transcription factor NF-kappa B, increase the production of
interferon-gamma (Gombart et al., 2020).

Zhang et al. (2020) showed that infected patients with increased
selenium levels were more prone to recover from COVID-19. This
has been also reported previously on other viral infections such as
HIV (Taylor et al., 2016), hepatitis B-mediated liver cancer
(Steinbrenner et al., 2015), or epidemic hemorrhagic fever (Hou,
1997).

8. Future perspectives

The recent emergence of the novel coronavirus along with the rapid
and continuous evolution of the pandemic has caused serious threats
to public health and greatest economic, social, and medical losses
worldwide. Nowadays, there is an increasing gravity of the situation,
a lack of appropriate detection assays for the identification of
SARS-CoV-2 infected patients, and an incapacity of the existent
therapeutic interventions to manage COVID-19. Therefore, there is
a global emergency that needs new approaches to eradicating this
global crisis. Evidence from this work supports the fact that plant
phytochemicals could be a successful target-specific drug against
viral infections. At the moment, scientists and clinicians are
dedicating all the efforts to ameliorate prevention, treatment, and
control of COVID-19. It is well understood that an effective or ideal
vaccine will take more time to fully develop, so nations and officials
will need massive efforts to minimize the impact of future epidemics.
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