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Abstract
To investigate the antidiabetic properties of the selected Cichorium intybus L. phytochemical compounds
against two target proteins of type 2 diabetes mellitus (T2DM), i.e., adenosine monophosphate deaminase 1
isoform 1 (AMPD1) and protein kinase A (PKA).We examined the active phytochemical compounds present
in C. intybus to unveil their potential. This involved conducting molecular docking analysis to assess their
efficacy against type 2 diabetes mellitus (T2DM) targets, a process performed using Schrodinger Maestro
v12.1 docking software.

During the molecular docking process, Schrodinger Maestro 12.1v software generated a broad spectrum of
docking scores. Among the chosen phytochemical compounds, chlorogenic acid exhibited the highest
docking scores against AMPD1 and PKA, measuring –8.41 kcal/mole and –12.56 kcal/mole, respectively.
Chlorogenic acid from C. intybus was observed with a significant docking score though concluded to be a
more potent antidiabetic compound.
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1. Introduction

The frequency of type 2 diabetes mellitus (T2DM), in the human
population is increasing at a rapid rate. T2DM and its associated
disorders, known as metabolic syndrome, affect over 380 million
people worldwide (Chowdhury, 2010). A report from the
International Diabetes Federation (2011), revealed that 366 million
people are anguish from diabetes mellitus presently while by 2023 it
will rise to 552 million (Whiting et al., 2011). T2DM has become a
serious medical issue and each country is facing plenty of financial
burden regarding this disorder. Hence, it is important to develop
effective management strategies in preventing T2DM and also with
its associated complications. T2DM accounts for over 90-95 % of all
people with diabetes and in this disorder, the pancreas produces
ample insulin but some misleads either with the insulin binding
receptor or insulin signalling inside the target cells (WHO, 1994).
Insulin resistance is the basic abnormality in the metabolism of glucose
that underlies these disorders (Zhou et al., 2019). T2DM is an insulin
independent disorder. Insulin resistance occurs due to a variety of
factors which include genetic factors, more consumption of processed
food, obesity, inactive lifestyle, and adult onset (>30 years) (Isganaitis
and Lustig, 2005). Among the main factors, i.e., obesity promotes a
metabolic inflammatory response, enduring inflammation in adipose
tissue and thereby causing insulin resistance, the fundamental cause

of T2DM (Zietek and Rath, 2016). Various studies have evident that
skeletal muscle is a crucial site of insulin action, adds to the state of
T2DM observed in humans and animals due to consumption of the
food that has high fat content. Children less than 15 years of age can
also be affected by T2DM; however, the symptoms tend to be mild
(Zimmet et al., 2014). If not detected at an early stage, children may
develop multiple diseases, including kidney disorders and organ
damage involving the kidneys, eyes, nerves, heart, blood vessels,
tuberculosis, and even mucormycosis over an extended period.
Additionally, most of the time in T2DM disorder the blood glucose
level appear normal while abnormal at some periods. If random
blood sugar (RBS) examination at normal periods is performed, it
might not be detected. However, the haemoglobin A1c (HbA1c) test
detects average glucose levels in blood over 3 months while T2DM is
diagnosed when the HbA1c level in the blood is 6.5 per cent or higher
though it is highly essential that we have to manage this disorder
after its detection.

Skeletal muscle is the main location of insulin-mediated glucose
absorption in humans during the postprandial state (DeFronzo and
Tripathy, 2009). Insulin increases the translocation of the glucose
transporter GLUT4 from intracellular vesicles to the plasma membrane
and transverse tubules, stimulating glucose uptake (Suzuki and Kono,
1980). By turning on glycogen synthase, insulin increases the
production of muscle glycogen. The two main target proteins of
insulin resistance are adenosine monophosphate deaminase 1 isoform
1 (AMPD1) and protein kinase A (PKA). T2DM has been linked to
insulin’s inability to effectively inhibit AMPD1 and PKA activity in
skeletal muscle, which is necessary for such effects of insulin to
function at least in part. So, it has been disclosed that the skeletal
muscle is among the significant organs involved in insulin resistance
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(Bouzakri et al., 2005), so the therapies that direct targets expressed
in such tissue may offer novel approaches for treating T2DM disorder
(Subramoniam, 2014). Moreover, a recent study revealed that
metformin, the most well-known medications to treat of insulin
resistance, inhibits AMPD1 and the PKA which are obtained from
skeletal muscle (Ouyang et al., 2011).

Cichorium intybus L. (Chicory) is a medicinal herb belonging to the
family Asteraceae that grows up to 1.5 meters ht. In India, chicory is
widely cultivated within the states of Gujarat and region of Uttar
Pradesh specifically in the districts of Etah and Aligarh (Srivastava
et al., 2003). Chicory leaves have abundant medicinal properties and
the leaves consist of high dietary fibre sources favourable for poultry
and livestock nutrition (Mahmoud, 2021). Chicory is mostly grown
for its roots which are employed in the food processing industry and
also accepted as a coffee substitute internationally. Chicory plant
consists of many secondary metabolites including tannins, coumarins,
and flavonoids and they are reported to have biological activities
including antioxidant, anti-inflammatory, anticancer, antiparasitic,
antihepatotoxic properties which have a supportive health effect on
livestock as well as in humans (Das et al., 2016; Arya et al., 2022).
Furthermore, the ethanol extract of chicory is extensively utilized
for treating diabetes mellitus, as it effectively reduces the activity of
hepatic glucose-6-phosphatase (Pushparaj et al., 2007; Yadav and
Srivastava, 2014).

Molecular docking is a computational simulation of a candidate that
predicts the favored orientation of ligand binding to an active site of
a receptor and forms a stable complex with minimum energy (Mukesh
and Rakesh, 2011). As there are several stages and workflows involved
in the finding of new drugs, in silico tools, particularly molecular
docking, are used to streamline the process overall. With molecular
docking, the therapeutic potential of any compound can be evaluated
in advance, saving time and money on the drug development process.
For instance, the present analytical study utilizes a computational
approach to evaluate the pharmacological properties of chicory
phytoconstituent against T2DM disorder.

This study aims to identify innovative ligand compounds targeting
adenosine monophosphate deaminase 1 isoform 1 and protein kinase
A and assess their ADMET pharmacokinetic properties (Indumathy
et al., 2023). These analyses are pivotal for gauging the safety profile
of identified compounds, and determining their potential as drug
molecules for further development.

2. Materials and Methods

2.1 In silico analysis (Software and database)

Schrodinger-Maestro 12.1v software, PubChem Database https://
pubchem.ncbi.nlm.nih.gov/, PubMed Database https://pubmed.
ncbi.nlm.nih.gov/, RCSB-PDB https://www.rcsb.org/ , Swiss-model
(https://swissmodel.expasy.org/) – homology modelling server of
protein, SwissADME (http://www.swissadme.ch/) a free web tool to
predict ADME parameters and ProTox-II Server (https://tox-
new.charite.de/protox_II/). Endocrine disruptome (http://
endocrinedisruptome.ki.si/).

2.1.1 Swiss-model

Swiss-model, a fully automated server that can cast protein structure
through homology modelling (Biasini et al., 2014) including the
retrieval of complete amino acid sequences in fasta format using the

protein database of the National Center for Biotechnology
Information (NCBI). The second step is to submit the fasta sequence
of amino acids into the swiss-model server to discover a known
template structure that resembles to the target sequence. Thereafter,
the basic local alignment search tool (BLAST) was employed to
choose a set of proteins with greater homology which was present in
the protein data bank (PDB). Third, using the template structure as
a basis, a 3 dimensional (3D) model of the target protein structure
was modelled. Fourth, the modelled structure’s molecular dynamics
and thermodynamics were optimized to remove unnecessary
components. Lastly, until the model’s quality was optimized, the
previous three phases were repeated.

2.1.2 Phylogenetic analysis

To construct and analyze phylogenetic trees to study ancestral
relationships, a popular software known as MEGA11.0 (Molecular
Evolutionary Genetic Algorithm) is used on AMPD1 and PKA. When
building the phylogenetic tree, the distance-based method was used
with neighbour joining and the bootstrap value of 1000 replications
was considered (Tamura et al., 2021).

2.1.3 Molecular docking studies

Docking studies performed through Schrodinger-Maestro v 12.1
software. The pattern of molecule binding was explored using the
XP visualizer tool which was present in this software. The ligand
compounds possessing highly efficient affinity binding were picked
for further studies of absorption, distribution, metabolism, and
excretion profiling through SwissADME analysis and toxicity
prediction done through ProTox-II server (Dheeraj et al., 2023).

2.1.4 Preparation of Homo sapiens AMPD1 and PKA protein
structures

The polyphenol compounds reported in this paper have shown a
desirable antidiabetic activity (Sun et al., 2020). To study interactions
between these polyphenol compounds and the diabetes causing target
proteins like AMPD1 and PKA (Plaideau et al., 2012; Hafizur et al.,
2018), computational work has to be done by performing molecular
docking. From NCBI, we retrieved the protein sequence of AMPD1
(Accession: NP_000027.3) and PKA (Accession: AAL40923.1)
enzymes. The 3D protein structure was built using a Swiss-model
server. Then the protein was prepared, refined, optimized, and
minimized before docking by using the protein preparation wizard
tool of Schrodinger-Maestro (Release, 2016). In protein preparation,
all water molecules were eliminated, polar hydrogens were attached
to the heavy atoms so that charges were stabilized, bond order and
charges were allocated and all selenomethionines were converted
into methionines. By using optimized potentials for liquid simulations
(OPLS3e) force field the protein was minimized by converging heavy
atoms to RMSD 0.30 Å. The tautomeric states and the protonation
were kept at pH 7.0 ± 2.0. The Ramachandran plot was used to
assess the protein’s overall stability and its stereochemical quality
in the three dimensional structure (Yadav and Khandelwal, 2019).

2.1.5 Ligand preparation

Compounds that are used as input for docking studies were retrieved
from PubChem. The polyphenol compounds belonging to chicory
plants are taken as ligands and the compounds that are retrieved are
caffeic acid, chlorogenic acid, cichoric acid, coumarin, kaempferol,
and ferulic acid. Some prescribed drugs including metformin,
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sitagliptin, nateglinide, farxiga and dasatinib are taken as ligands to
compare with natural compounds. After incorporation of compounds
into the working station, parameters like Epik 2.2 are used for the
neutralization of compounds at pH 7.0 ± 2.0, and OPLS3e force field
is used in energy minimization of ligands which is included in the
Ligprep module of Schrodinger-Maestro software (Release, 2019).
All possible ring conformations, stereochemistry, and tautomers were
generated. Stereoisomers were generated by retaining specified
chiralities considering a maximum of 32 isomers per ligand. The
energy minimization of compounds helps in assigning bond order,
assigning hydrogens to the ligands, and also in the conversion of
ligand structures from 2D to 3D which is required for docking studies.
Later on, the generated output file was applied in docking studies. 

2.1.6 Binding site prediction and receptor grid generation

On the protein surface, the hydrophobic cavities are responsible for
its specificity (del Sol et al., 2006). The active site of protein can be
theoretically determined by using tools, based on algorithmic results
of computational geometry namely the sitemap of Schrodinger-
Maestro suite (Dundas et al., 2006; Halgren, 2007). This Sitemap
prediction tool scientifically furnishes the volume and area of these
hydrophobic cavities. Five standard sitemaps are provided and select
first sitemap conformation is to pick an atom in the ligand. Then, the
receptor grid is generated around the predicted active site by using
the glide module. The grid was in the shape of a cube which was
located in the centre of the centroid of the residues of the active site
of the receptor and all the parameters were kept in default condition
(Kawatkar et al., 2009). Additionally, sitemap can provide an altered
version of the scoring that correctly categorizes the drug ability of
proteins. Sitemap can identify the binding sites in a large scale
validation with the best outcomes for ligand binding sites with the
sub-nanomolar association (Halgren, 2009).

2.1.7 Glide extra precision (XP) ligand docking

Extra precision (XP) ligand docking was performed using Schrodinger
glide to obtain high-accuracy docking results (Halperin et al., 2002).
To soften the potential for ligand nonpolar parts, the scaling of the
van der waals factor and partial charge cut off were kept at 0.80 and
0.15, respectively. Flexible ligands docking with sample inversions
of nitrogen and sample ring conformations were selected. For all
predefined functional groups bias sampling of torsions was applied
and also Epik state penalties were applied to the docking score. The
final scoring function was carried out using energy-minimized
conformations and then it shows the result as docking score and
glide score. The conformation that had docked with the lowest
docking score was obtained for each ligand.

2.2 Visualization of results

2.2.1 Docking and glide score

The XP visualizer tool was utilized to view the docking and glide
score after performing ligand docking (Halperin et al., 2002). The
outcome was obtained in an excel sheet in CSV format.

2.2.2 Residues that stabilize AMPD1 and PKA - ligand complexes

The identification of AMPD1 and PKA amino acid residues that
interact with different sets of ligands in the most stable complex
conformation was done by using a ligand-protein 2D interaction
diagram.

2.2.3 In silico study: Determination of pharmacokinetic
parameters by SwissADME

After performing docking studies, the physicochemical descriptors
as well as ADME parameters of the selected lead compounds were
predicted by in silico analysis using the SwissADME web tool (Daina
et al., 2017). Refractive index, topological polar surface area, molecular
weight, hydrogen-bond donors and acceptors, topological polar
surface area (TPSA), and number of rotatable bonds (nRB) are some
of the descriptors of phytochemical compounds that are obtained
by using this tool. It also predicts the pharmacokinetic properties of
the obtained hit compound to support its drug discovery (Egan et
al., 2000). The canonical smiles notations of ligand compounds were
retrieved from the PubChem database and then it was used as an
input file for the SwissADME web tool. Based on Lipinski’s rule of
five, one can determine whether a ligand molecule has drug-like
activity or not. It is possible to have inadequate permeability and
absorption if more than two of the five parameters are out of range.

2.2.4 In silico study: Toxicological properties prediction by
ProTox-II server

The process of creating new drug designs includes a significant
amount of compound toxicity prediction. In addition to being quicker
than figuring out toxic doses in animals, computational toxicity
estimations can also reduce the need for animal testing. The toxicity
profile of the chicory chemical compounds and also the prescribed
drugs were predicted using the ProTox-II online server (Banerjee et
al., 2018). The toxicity parameters like hepatotoxicity,
immunotoxicity, carcinogenicity, mutagenicity, and cytotoxicity were
predicted.

The LD50 values for toxic doses are frequently expressed in mg/kg
body weight. The median lethal dose, or LD50, is the dose in which
half of the test subjects pass away after being exposed to a substance.

According to the globally standardized system of classification and
labeling of chemicals, toxicity classes are established. Values for LD50

are provided in [mg/kg].

Class I: If swallowed, fatal (LD50   5)

Class II: If swallowed, fatal (5 < LD50   50)

Class III: Toxic if swallowed (50 < LD50  300)

Class IV:  If swallowed, harmful (300 < LD50  2000)

Class V: May be harmful, if swallowed (2000 < LD50  5000)

Class VI: Non-toxic (LD50 > 5000).

2.2.5 In silico study: Endocrine disruption potential prediction

It is very critical to anticipate the endocrine disruption potential of
the chosen phytoconstituents and the prescribed drugs. The software
predicts the potential for endocrine disruption using an online
platform available at (http://endocrinedisruptome.ki.si), well-
validated web application for evaluating endocrine disruption
potential via nuclear receptor binding (Kolšek et al., 2014). This
software uses docking interface for target systems (DoTS) for the
docking simulation and the docking calculation is performed by
AutoDock Vina. The evaluation includes 16 different nuclear
receptors: Androgen receptor antagonist (AR an.) and Androgen
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receptor (AR); Estrogen receptors alpha antagonist (Er  an.),
Estrogen receptor alpha (Er ), Estrogen receptor beta antagonist
(Er  an.) and Estrogen receptor beta (ER ); Glucocorticoid receptor
antagonist (GR an.) and Glucocorticoid receptor (GR); Liver X receptor
 (LXR) and Liver X receptor  (LXR); Peroxisome proliferator-
activated receptors (PPAR),  (PPAR), and (PPAR); Retinoid
X receptor (RXR); Thyroid receptor (TR) and Thyroid receptor
(TR) (Kenda and Sollner Dolenc, 2020).

3. Results

3.1 In silico studies

3.1.1 Homology modelling

The AMPD1 and PKA protein sequences of Homo sapiens were
acquired from NCBI with accession numbers NP_000027.3 and
AAL40923.1, respectively. The amino acid sequence length for
AMPD1 and PKA are 747 and 2813 amino acids respectively. When
the 3D structures for AMPD1 and PKA were examined in the PDB
structure database, they were unavailable. So, the protein sequences
were employed for template selection by performing homology
modelling using the Swiss model. Both the templates (PDB ID:
2a3l.1.A and PDB ID: 4d0n.1.B) for AMPD1 and PKA were selected
and homology modelling of the protein was done and their structures
are illustrated in Figure 1. AMPD1 template shows 47.29% sequence
identity with an X-ray crystal structure atomic resolution having
3.3Å and QMEAND score is 0.73 ± 0.05 whereas for PKA template
shows 100% sequence identity with an X-ray crystal structure atomic
resolution having 2.1Å and QMEAND score is 0.76 ± 0.05.

3.1.2 Model evaluation and validation

The modelled 3D structure of the protein was stereochemically
validated by using the Ramachandran plot. Drug design must consider
the targeted protein’s reliability and quality in its 3D shape. The
allowed and disallowed regions are displayed on the Ramachandran
plot that was generated by using the Schrodinger’s suite tool (Figure
2). For AMPD1 as well as PKA proteins, more than 99% of the
residues were present in the allowed regions (96% of residues were
in the favoured region and 4% in the allowed regions and 0% in the
disallowed regions and this result infers the reliability and the attribute
of the protein structures.

3.1.3 Phylogenetic analysis

MEGA 11.0 software was used to construct a neighbour joining
phylogenetic tree of the selected AMPD1 and PKA proteins to find

out their evolutionary history among humans, chimpanzees, and
gorillas. The phylogenetic trees of AMPD1 and PKA are presented
in Figure 3. As per phylogenetic studies, the Homo sapiens AMPD1
isoform 1 is closely related to AMPD1of Homo sapiens and  then  is
also related to Pan paniscus (pygmy  chimpanzee)  up  to  some
extent. Pan troglodytes (chimpanzees)  were  ascertained  as  an
outgroup in the primates whereas the PKA protein is closely linked
to the PKA isoform 2 protein of Homo sapiens and then it is related
with gorillas up to some extent. Pan paniscus and Pan troglodytes are
in the same cluster for PKA protein and it infers that they are closely
related.

3.1.4 Molecular docking analysis

This study’s primary goal is to determine novel AMPD1 and PKA
inhibitors based on their binding affinity with AMPD1 and PKA
target proteins. Generally, phytochemical compounds have one to
many medicinal properties and they are taken as inhibitor compounds.
In this study, seven different phytochemical compounds from the C.
intybus  along with the five prescribed drugs available in the market
are taken into consideration and their 3D conformers are presented
in Table 1. Then we performed  virtual  screening  studies  to  know
their inhibitory effect on AMPD1 and PKA proteins. Chlorogenic
acid (phenolic compound) present in roots of C. intybus  had shown
highest significant Glide score of -8.42 and Dock score of -8.41 for
AMPD1-chlorogenic acid complex whereas Glide score of -12.56
and Dock score of –12.56 for PKA-chlorogenic acid complex. The
results of docking studies are detailed in Table 2 and the Figures of
docking are presented in Figure 4 and the best 3D binding poses are
presented in Figure 5.

Each phytochemical that has been employed for this study needs to
qualify for the drug likeness test for in silico drug designing. All the
phytochemicals should not violate the Lipinski rule of 5 for various
descriptors. The independent descriptors of various phytochemicals
were determined using the SwissADME web online server and
represented in Table 3. Two minimum violations are allowed for
each phytochemical to be considered for further analysis. The Varying
descriptors of each phytochemical (ligand) along with 5 commercial
drugs were compared manually. According to the Table 3, cichoric
acid had two violations whereas chlorogenic acid had one violation
while the rest of the phytochemical compounds had zero violations.
The prescribed drugs which are in comparison with the
phytochemicals have zero violation. In this study, we have decided
to choose two minimum violators for each phytochemical and they
are taken for molecular docking.

Table 1: Selected natural compounds of chicory plant and prescribed drugs with their molecular formula and 3D conformers used
for in silico study

S.No. Natural compounds PubChem ID Molecular formula 3D conformer

1. Caffeic acid CID 689043 C9H8O4

2. Chlorogenic acid CID 1794427 C16H18O9
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3. Cichoric acid CID 5281764 C22H18O12

4. Coumarin CID 323 C9H6O2

5. Kaempferol CID 5280863 C15H10O6

6. Ferulic acid CID 445858 C10H10O4

7. Metformin CID 4091 C4H11N5

8. Sitagliptin CID 4369359 C16H15F6N5O

9. Nateglinide CID 5311309 C19H27NO3

10. Farxiga CID 9887712 C21H25ClO6 ` 

11 . Dasatinib CID 3062316 C22H26ClN7O2S
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Table 2: Docking scores of phytochemical compounds of the chicory plant and available prescribed drugs with AMPD1 and PKA
enzymes for antidiabetic activity

AMPD1 PKA

Compounds Docking score Glide score Lipophilicity Docking score Glide score Lipophilicity
(kcal/mol) (kcal/mol) (kcal/mol) (kcal/mol)

Chlorogenic acid -8.41 -8.42 -3.42 -12.56 -12.56 -3.37
Cichoric acid -1.37 -1.37 -3.54 -9.28 -9.28 -4.65
Coumarin 3.89 -3.89 -2.82 -6.51 -6.51 -3.25
Kaempferol -5.57 -5 .6 -2.54 -3.78 -3.81 -1.78
Ferulic acid -2.55 -2.55 -1.53 -4.96 -4.96 -1.03
Caffeic acid -4.98 -4.98 -1.55 -7.79 -7.79 -2.73
Prescribed drugs available in market

Metformin -5.68 -6.04 -0.82 -3 .6 -3 .6 -0.76
Sitagliptin -6.38 -6.38 -2.67 -3.08 -3.09 -1.19
Nateglinide -3.36 -3.36 -2.52 -3.56 -3.56 -1.95
Farxiga -5.14 -5.14 -2.95 -4 .6 -4 .6 -1.19
Dasatinib -6.61 -7.05 -3.74 -2.75 -2.31 -1.98

Table 3: Pharmacological properties of phytochemical compounds of chicory as well as prescribed drugs

S.No. Natural Compound Mol.Wt (g/mol) LogP n O H nO HN H Nb Bioavailability Number of violations

1. Caffeic acid 180.16 0.93 0 4 0 3 0 2 0.56 0 0
2. Chlorogenic acid 354.31 -0.38 0 9 0 6 0 5 0.11 0 1
3. Cichoric acid 474.37 1.01 1 2 0 6 1 1 0.11 0 2
4. Coumarin 146.14 1.82 0 2 0 0 0 0 0.55 0 0
5. Kaempferol 286.24 1.58 0 6 0 4 0 1 0.55 0 0
6. Ferulic acid 194.18 1.36 0 4 0 2 0 3 0.85 0 0

  Prescribed drugs available in market

1 . Metformin 129.16 -0.89 0 2 0 3 0 2 0.55 0 0
2. Sitagliptin 407.31 2.51 1 0 0 1 0 6 0.55 0 0
3. Nateglinide 317.42 3.21 0 3 0 2 0 7 0.85 0 0
4. Farxiga 408.87 2.18 0 6 0 4 0 6 0.55 0 0
5. Dasatinib 488.01 2.80 0 6 0 3 0 8 0.55 0 0

Note: Log P (lipophilicity), nOH (no. of H bond acceptors), nOHNH (no. of H bond donors), Mol.Wt (molecular weight), nb (no. of rotatable
bonds) and violations based on Lipinski rule.

Table 4: Toxicity properties of phytochemical compounds

Natural compound Hepatotoxicity Carcinogenicity Immunotoxicity Mutagenicity Cytotoxicity

Caffeic acid Inactive Active Inactive Inactive Inactive

Chlorogenic acid Inactive Inactive Active Inactive Inactive

Cichoric acid Inactive Inactive Active Inactive Inactive

Coumarin Inactive Active Inactive Inactive Active

Kaempferol Inactive Inactive Inactive Inactive Inactive

Ferulic acid Inactive Inactive Active Inactive Inactive

Caffeoylmalic acid Inactive Inactive Active Inactive Inactive

Prescribed drugs available in market

Metformin Inactive Inactive Inactive Inactive Inactive

Sitagliptin Inactive Inactive Inactive Inactive Inactive

Nateglinide Inactive Inactive Inactive Inactive Inactive

Farxiga Inactive Inactive Inactive Inactive Inactive

Dasatinib Inactive Active Active Inactive Inactive
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3.1.5 Prediction of endocrine disruption potential
This study’s primary goal is to determine novel AMPD1 and PKA
inhibitors based on their binding affinity with AMPD1 and PKA
target proteins. According to predictions made using the
computational tool Endocrine Disruptome, a small number of human
nuclear receptors can be affected by the selected phytochemicals
and prescribed drug action. The possibility that these phytoalexins
and prescribed drugs will bind to a few of these receptors, red boxes
indicate a high possibility of binding, orange boxes indicate an
intermediate possibility of binding, yellow boxes indicate a moderate
possibility of binding whereas the green boxes indicate a low
possibility of binding. 
The selected phytochemicals and the prescribed drugs show moderate
to intermediate possibility of binding on the antagonist androgen

receptor but the kaempferol compound has shown a high possibility
of binding on both the androgen and antagonist androgen receptors.
The phytochemicals and the prescribed drug’s capitative for endocrine
disruption were predicted, as a result of their interactions with
several human nuclear receptors are shown in Table 5. The Endocrine
Disruptome tool’s predictions show that the nuclear receptors that
are nearly affected by the studied phytoalexins and the prescribed
drugs are: AR an, AR, ER , GR, TR , and TR . This result is in line
with the published research showing that antidiabetic drugs can bind
with the nuclear receptors, particularly on antagonist androgen
receptors, glucocorticoid receptors, and thyroid hormone receptors
 and . (Sakkiah et  al., 2018; Niemuth et al., 2015; Lehmann
et al., 1995).

Table 5: This study aims to identify new inhibitors for AMPD1 and PKA by assessing their binding affinity with target proteins.
It also predicts the endocrine disruption potential of selected phytochemicals and prescribed drugs,  categorizing their
binding probabilities into high, intermediate, moderate, and low likelihoods

Phytochemicals AR AR an ER ER an ER Eran GR GR an LXR LXR PPAR PPAR PPAR RXR TR TR

Caffeic acid -6.8 -6.6 -6.4 -6.6 -6.4 -6.3 -7.0 -6.0 -6.6 -7.0 -6.2 -6.1 -6.6 -7.2 -6.9 -6.8

Chlorogenic acid -6.8 -8.1 -8.5 -7.3 -8.4 -7.0 -8.9 -7.6 -8.8 -8.8 -7.6 -7.8 -7.9 -9.3 -8.7 -8.3

Cichoric acid -6.0 -6.5 -8.6 -8.7 -4.0 -7.8 -9.3 -8.3 -9.4 -8.2 -7.8 -8.5 -9.0 -9.7 -6.7 -8.9

Coumarin -6.8 -6.9 -6.3 -6.6 -6.3 -6.4 -6.3 -6.0 -7.0 -7.0 -6.3 -6.9 -6.9 -6.5 -7.0 -6.6

Kaempferol -8.8 -8.6 -8.4 -8.5 -7.9 -8.4 -8.7 -7.9 -9.0 -9.1 -7.7 -8.6 -9.4 -9.2 -9.2 -9.1

Ferulic acid -6.6 -6.5 -6.2 -6.3 -6.3 -6.2 -7.2 -6.0 -6.5 -6.9 -6.2 -6.1 -6.5 -7.4 -7.2 -6.6

Caffeoylmalic acid -7.6 -7.6 -7.6 -7.7 -7.8 -7.1 -7.8 -6.8 -7.8 -7.7 -7.3 -7.3 -7.1 -8.1 -7.9 -8.2

Prescribed drugs available in market

Metformin -4.9 -5.3 -5.3 -4.9 -4.9 -4.7 -4.7 -4.9 -5.1 -5.0 -5.1 -5.1 -4.8 -4.8 -5.2 -5.2

Sitagliptin -7.7 -7.8 -9.2 -8.5 -8.6 -8.0 -9.5 -8.5 -10.1 -10.5 -8.9 -10.0 -9.1 -10.1 -9.7 -9.9

Nateglinide -7.3 -8.4 -8.5 -8.4 -7.9 -7.7 -8.9 -7.1 -9.3 -8.9 -8.0 -8.5 -7.7 -9.2 -9.2 -9.3

Farxiga

Dasatinib 7.8 5.1 -6.6 -8.9 3.5 -8.1 -7.0 -9.5 -9.1 -9.1 -7.5 -8.7 -8.0 -5.2 0.2 -0.6

A B

 Figure 1: 3D structures of the target proteins (Å) AMPD1 and (B) PKA built using Swiss model tool.
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2a3l.1 .a 4d0n.1 .B

Figure 2: Ramachandran plots for 2a3l.1.A and 4d0n.1.B target proteins generated by PROCHECK.

Figure 3: Evolutionary history of AMPD1 and PKA proteins were constructed using MEGA11.0.

                     

Chlorogenic acid with AMPD1 Chlorogenic acid with PKA
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Cichoric acid with AMPD1 Cichoric acid with PKA

Coumarin with AMPD1 Coumarin with PKA
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Kaempferol with AMPD1 Kaempferol with PKA

Ferulic acid with AMPD1 Ferulic acid with PKA

Figure 4: Visualization of 2D AMPD1 AND PKA proteins and their phytochemical ligand interaction, Lid legend tool, Schrodinger
software.

(A)    (B)

Figure 5: Best 3D binding pose of chlorogenic acid on AMPD1 (A) and PKA 3D (B) protein structure taken from Schrodinger
software v 12.1.
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3.1.6 Oral toxicity prediction

The toxicity was predicted through ProTox-II web server using
chemical similarity, fragment propensity, and machine-learning
software and the analysed results are illustrated in Table 4. All the
natural compounds have predicted toxicity class either 04 or 05
except coumarin having toxicity class 03. Chlorogenic acid which
has the highest docking score for both the target proteins falls under
toxicity class 05, slightly immunotoxin in nature, and the predicted
LD50 value is: 5000 mg/kg, and less than this dose may be made and
prescribed as a drug compound.

4. Discussion
The dual targets of diabetes mellitus that are the subject of the
present study include essential structural target proteins. The disease
can be effectively reduced by inhibiting these targets. The bioactive
compounds used in this work were chosen from the C. intybus plant,
and our in silico docking tests revealed that the bioactive compounds
interacted with the target receptor molecules. The bioactive herbal
compounds have demonstrated higher inhibitory efficacy due to
their lower binding energies when compared to the standard
medications. Schrodinger Maestro v 12.1 docking analysis revealed
that C. intybus’s chlorogenic acid had the highest docking score,
which was -8.41 kcal/mole for AMPD1 and -12.56 kcal/mole for PKA
target proteins. Chlorogenic acid formed hydrogen bonds with the
residues Gly742, Arg717, Gln645, and Lys730 to interact with the
different amino acids of the AMPD1 receptor. In addition, chlorogenic
acid formed hydrogen bonds with the residues Phe54, Gly55, Lys
72, Val123, and Asn171 of the PKA receptor to interact with its
amino acids. With one exception, the ADME parameter of chlorogenic
acid obeys with the Lipinski rule of five. Our findings revealed that
chlorogenic acid had less toxicity with respect to hepatotoxicity,
carcinogenicity, mutagenicity and cytotoxicity but it has some
immunotoxic properties and there is a need for further studies to be
done. Chlorogenic acid has low to moderate binding affinity to the
hormone receptors (such as ERs and TRs) whereas kaempferol has
highest binding affinity to androgen receptors and it is inactive in
toxicity for all the toxic nature properties. Given that a compound
with a greater negative docking score will have a higher efficacy,
chlorogenic acid from C. intybus which was observed with a
considerable docking score, may develop into a potent antidiabetic
medication.

5. Conclusion
Among all the phytochemical compounds, chlorogenic acid showed
the best docking score against AMPD1 and PKA target proteins. So,
chlorogenic acid can be the best phytochemical compound as it
inhibits both the target proteins and possesses the best molecular
docking value when compared to other phytochemical compounds
and prescribed drugs. However, in order to confirm the use of
biological active molecules from C. intybus for drug development,
disease therapy, or management, in vivo tests needs to be done using
the potential diabetic target proteins.
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