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Abstract

Hepatocellular carcinoma (HCC) is a leading global cause of cancer-related deaths, primarily linked to
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inflammation. Hepatocytes can show varied inflammatory responses due to a wide range of causal factors.
Inflammation can either decrease or continue based on the cause and contributing factors. The main
factor contributing to immune suppression is chronic inflammation, along with tissue remodeling, genetic
changes, and alterations in cellular signaling. Immune suppression causes a loss of the body's ability to

Keywords combat tumors, leading to the advancement and growth of HCC. Tumor cell processes like DNA damage,
Carcinoma necrosis, and ER stress influence immune-surveillance and inflammation, showing a mutual connection. In
Anti—inﬂammatory this article, we explore the present understanding of the initiation of chronic liver injury and inflammation,
Curcun?m their association with HCC, and strategies for mitigating inflammation utilizing curcumin, the principal
I/\\Ig((:)rpotsolzis polyphenolic curcuminoid present in turmeric. The review article elucidates curcumin's role in hepato-

Immune suppression carcinoma, detailing its antioxidant, apoptotic, and anti-inflammatory potential.
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1. Introduction the liver, and deposition of connective tissue. Prolonged inflammation
is associated with an increased risk of various cancer types. Risk
factors for hepatocellular carcinoma (HCC) encompass hepatitis B
and C viruses, metabolic disorders, diabetes, obesity, excessive alcohol
consumption, and other factors that trigger inflammation. These
cellular alterations result in changes to the matrix and micro

environment of hepatocytes (Greten et al., 2015) (Figure 1).

Hepatocellular carcinoma (HCC) is a prevalent form of liver cancer
and a major global cause of mortality. The occurrence of HCC is
higher in males, with a male to female ratio of 2.4:1, and it is more
prevalent in Eastern and Southern Asia, as well as Middle and Western
Africa (Woo et al.,, 2011). Oncogenic agents induce prolonged liver
damage, ultimately resulting in cirrhosis. Hepatocellular carcinoma

(HCC) is closely associated with alcohol consumption as well as oy
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steatohepatitis, and primary biliary cirrhosis. Cirrhosis and persistent
liver disease are recognized as primary factors contributing to the
global onset of HCC. Heavy alcohol consumption is identified as the
predominant risk factor for the development of hepatocellular
carcinoma (Grivennikov et al., 2010). Individuals with chronic medical
conditions like diabetes mellitus and obesity have a higher prevalence
of hepatocellular carcinoma. Due to its substantial role in glucose
metabolism, the liver is promptly affected by diabetes mellitus.
Persistently elevated blood glucose levels can lead to cirrhosis, fatty
liver, chronic hepatitis, and ultimately progress to liver failure. The
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Figure 1:Different risk factors associated with hepatocellular
carcinoma (HCC).

primary causes of HCC development are chronic hepatitis or cirrhosis,
which cause hepatocyte damage, infiltration of inflammatory cells in
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2. The microenvironmental factors in HCC

Chronic inflammation, genetic mutations, tissue remodeling, and
alterations in cellular signaling are significant mechanisms implicated
in the initiation and advancement of hepatocellular carcinoma (HCC).
These processes are influenced by the hepatic microenvironment
and its interconnected nature. Following a persistent HBV or HCV
infection in humans, the progression of hepatocarcinogenesis can
span over 30 years (Zucman-Rossi et al., 2015). In some individuals
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with persistent HBV or HCV infections, cirrthosis and HCC may
develop. Notably, livers affected by chronic hepatitis and cirrhosis
show a higher incidence of HCC, particularly arising from dysplastic
hepatocytes (McMahon, 2009).

3. Genetic alteration during the preneoplastic and plastic
phase

The uncontrolled generation of genetic abnormalities in cancer cells
is influenced by several factors, including viral infections, exposure
to carcinogens like aflatoxin B1, and deficiencies in DNA repair
mechanisms. Throughout the extended preneoplastic phase preceding
HCC, alterations in gene expression primarily manifest quantitatively
due to epigenetic mechanisms, rather than structural changes to genes
or chromosomes. Elevated expression of transforming growth factor
(TGF) and insulin-like growth factor-2 (IGF-2) leads to increased
hepatocyte proliferation (Coste et al., 1998; Grisham, 2002). These
shifts in TGF and IGF-2 expression signify a substantial upregulation
of numerous genes during the preneoplastic stage driven by epigenetic
mechanisms. The interplay of cytokines from infiltrating
inflammatory cells causing hepatocyte damage, viral transactivation,
and the liver’s regenerative response to cell loss contributes to the
heightened production of TGF and IGF-2 (Soni et al., 1995;
Schwienbacher et al., 2000). The modified methylation and imprinting
of the IGF-2 gene are associated with uncontrolled IGF-2 production
(Theise et al., 1996), leading to the inactivation of the P1 promoter,
activation of the P3 promoter, and significant growth factor produc-
tion. Commencing within the liver, the origin of chronic hepatitis
and cirrhosis, abnormal methylation (either low or hypermethylation)
disrupts the CpG islands of various genes and chromosomal segments
(Toshikuni et al., 1999). Changes in chromatin acetylation represent
significant factors that can induce epigenetic alterations in DNA,
although such modifications have not been observed in the livers of
HCC patients. Ongoing inflammation and oxidative damage allow
hepatocytes to continue accumulating genetic alterations (Chang et
al., 1993). Several studies suggest that HCV proteins may directly
contribute to cancer by obstructing signaling pathways like the Wnt/
B-catenin, TGF, NF-kB, or P53 pathways. Acetaldehyde and reactive
oxygen species metabolites resulting from alcohol consumption can

cause mutations through DNA attachment, lipid peroxidation, or the
formation of DNA adducts. Moreover, persistent oxidative stress
due to alcohol consumption and cytokine release is a leading cause of
chronic inflammation, cirrhosis, and progression to HCC. Chen and
colleagues (Kanai ef al., 1999) conducted an analysis of 1074 articles
using bioinformatic methods, identifying approximately 560 human
genes associated with HCC. These genes are involved in critical
functions such as transcription, DNA methylation, protein catabolism,
and gene expression. Through biological function enrichment analysis,
the researchers discovered pathways linked to cellular processes
like apoptosis, necro-apoptosis, and cell cycle, significantly relevant
to hepatocarcinogenesis. These pathways can be categorized into
three main modules: the first encompassing signaling, immunological
suppression, cellular metabolism, and regulation of various hormonal
variables; the second establishing a clear connection between HCC
initiation and HBV and HCV viral infection; and the third comprising
differentially expressed genes collaborating to influence the same
biological activities across various malignancies. During their
investigation, fourteen genes were identified as potential biomarkers
for HCC diagnosis and treatment. CDK2 and CDK4 are particularly
significant due to their cooperation with cyclin E and D, facilitating
the cell cycle transition from phase G1 to phase S. Alterations in
these genes directly impacts the control of the cell cycle in hepato-
carcinogenesis. Notably, CDKNI1A, a tumor suppressor and inhibitor
of CDK2-+4, is regulated by TP53. TP53 has a substantial impact on
cancer growth by drastically reducing VEGFA expression, conse-
quently influencing neo-angiogenesis. These genes play a crucial role
in distinguishing cancer cells from normal cells (Nagai et al., 1999).

4. Chronic inflammation

The major instigators of HCC and tumor growth likely involve invasion
by macrophages and immature myeloid cells, uncontrolled production
of cytokines, and persistent inflammation. In the early stages of
carcinogenesis, when the chronic inflammatory pathway is activated,
the production of reactive oxygen species (ROS) and nitric oxide
synthase (NOS) takes place. Inflammatory cells produce numerous
cytokines, growth factors, chemokines, proangiogenic factors, and
various molecules (Balogh et al., 2016) (Figure 2).
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Figure 2: Role of stromal cells in creating a premalignant microenvironment and initiating HCC [HSCs
(hepatic stellate cells), TAMs (tumor associated macrophages) and TANs (tumor associated
neutrophils)].



These inflammatory mediators play a vital role in creating an
environment conducive to hepatocyte transformation, enhancing their
survivability by activating antiapoptotic signaling pathways, and
reducing immune surveillance. During an HBV infection, platelets,
storing a range of inflammatory chemicals and immune mediators in
their intracellular granules facilitate the accumulation of virus-specific
CD8" T cells and nonspecific inflammatory cells within the liver
parenchyma.

Activation of platelets, resulting in the release of various growth
factors (GFs) that govern cellular proliferation and neo-angiogenesis,
attracts inflammatory cells to the inflammation site. Platelets store a
range of inflammatory substances and immune mediators within
intracellular granules, aiding in the accumulation of virus-specific
CD8" T cells and non-specific inflammatory cells in the liver
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parenchyma during an HBV infection (Figure 3). The pathways leading
to HCC development from NASH are significantly influenced by
chronic inflammation. Genetic variables and obesity exacerbate
inherited disorders such as insulin resistance and steatosis. The altered
metabolism of injured hepatocytes, regulated by Toll-like receptors,
serves as the primary trigger for the inflammatory response (Yu et
al., 2018). By activating the inflammasome and simultaneously
producing pro-inflammatory and pro-fibrogenic cytokines and
ligands, hepatocytes effectively attract Kupffer cells and other
components of the innate immune response, given their anti-
inflammatory properties, these factors suggest the potential of anti-
inflammatory medications in reducing the chronic risk of neoplastic
development. Anti-inflammatory medications, by inhibiting the COX
(Cyclooxygenase) enzyme pathway that induces inflammation,
contribute to reducing cellular proliferation (Pancoska and Carr, 2014).
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Figure 3: Platelet’s role in accelerating liver damage through growth factor promotion.

5. Inflammation and its impact on tissue remodelling

Through the activation of platelet factors like VEGF (vascular
endothelial growth factor) and EGF (epidermal growth factor), chronic
inflammation can instigate tissue remodeling (Tao et al., 2023).
Stromal cells, such as fibroblasts and hematopoietic stem cells (HSCs),
play a significant role in enhancing the formation of the extracellular
matrix. Immune cells can influence ECM remodeling by activating
stromal cells or generating MMPs (matrix metalloproteinases) that
specifically break down ECM, altering the structure and functionality
of the HCC microenvironment (Johansen, 2006).

Kupffer cells, macrophages, and platelets are attributed to the
production and release of TGF-3, a growth stimulant for hematopoietic
stem cells (Yu et al., 2018). Tumor cells can induce the remodeling of
stromal cells through altered signaling pathways. ECM degradation
amplifies the release of growth factors (GFs), promoting tumor
formation. Additionally, it may result in the production of cell surface
receptors or bioactive cleavage products, acting as stimuli for cancer
cell proliferation. The breakdown of ECM also disrupts growth-

suppressing adhesion complexes, further encouraging cancer growth
(Oishi et al., 2014). These processes, including remodeling that alters
blood flow and induces hypoxia, significantly contribute to tumor
growth. Both tumor cells and non-tumor cells are prompted to express
pro-angiogenic factors in hypoxic conditions. Studies have shown
an upregulation of VEGF, promoting the formation of new blood
vessels to balance oxygen levels (in hypoxic conditions) and provide
the necessary nutrients for cancer growth (Forsythe et al, 1996;
Rakesh, 2005).

6. Additional factors and their role in chronic inflammation

Chronic inflammation, often triggered by toxins, specific viral
infections, excessive alcohol consumption, and non-alcoholic fatty
liver disease (NAFLD/NASH), is the primary cause of hepatocellular
carcinoma (HCC). These factors disrupt normal cellular processes,
gradually leading to the development of liver cancer. Addressing
inflammation is crucial in HCC prevention.
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7. Role of curcumin on modulating different HCC mediators

Curcumin plays a significant role in suppressing and preventing the
progression of the disease by regulating cellular processes and
inhibiting inflammation. The inflammatory pathway comprises four
components: inducers, receptors, mediators, and effectors, influencing
various physiological and pathological processes that induce
inflammation. Curcumin’s anti-inflammatory effects involve
modulating target tissues responses to inflammatory mediators, acting
on receptors and signaling pathways, reversing the impact of the
medium on the target tissue, generating anti-inflammatory mediators,
and other actions (Raghavi et al., 2023; Makwana et al., 2021,
Chandrakala and Vidyavathi, 2023). Through the control of
inflammatory signaling pathways and prevention of inflammatory
mediator generation, curcumin exhibits its anti-inflammatory effects
(Rahmani et al., 2016; Reddy et al, 2023) (Figure 4). Curcumin
effectively inhibits activator protein 1 (AP-1) activity and other
signaling pathways by binding to Toll-like receptors (TLRs),
influencing nuclear factor kappa-B (NF-kB), mitogen-activated
protein kinases (MAPK), and related pathways (Zhang et al., 2019;
Rahimifard et al., 2017). Additionally, curcumin can inhibit NF-xB
by modulating the peroxisome proliferator-activated receptor-gamma
(PPAR-B) receptor (Li et al., 2019; Zhu et al., 2019). Through
modulation of the Janus kinase/signal transducer and activator of
transcription (JAK/STAT) inflammatory signaling system, curcumin
further exhibits anti-inflammatory effects (Ashrafizadeh et al., 2020;
Kahkhaie et al., 2019). Human studies have demonstrated curcumin’s

ability to reduce various inflammatory and pro-inflammatory
mediators, including interleukin-1 (IL-1), IL-6, IL-8, IL-17, IL-27,
tumor necrosis factor-alpha (TNF-a), induced nitric oxide synthase
(iNOS), NO, RANTES, G-CSF, and monocyte chemotactic protein-1
(MCP-1) (Dong et al., 2018; Zeng et al., 2012; Alizadeh et al., 2017).
The specific effects of curcumin on various inflammatory mediators
are described in detail in the Table 1.

8. Role of curcumin in inhibiting proinflammatory cytokine
production

Several in vitro and in vivo studies demonstrate the significant
reduction of pro-inflammatory cytokines, including IL-1, IL-6, IL-
8, and TNF-a, by curcumin and its analogues. Curcumin efficiently
modulates inflammation through well-studied mechanisms, with a
key pathway being NF-kB. The regulation of NF-kB signaling is
multi-faceted, including inhibition of IKK activity as an initial step.
In a head and neck cancer patient trial, curcumin administration led
to decreased levels of IL-8, TNF, and IFN expression, along with
reduced IKK activity in saliva samples (Zhou et al., 2011).
Furthermore, curcumin enhances the stability and expression of IyB,
blocking cytokine-induced NF-«B activation and IyB phosphorylation
at serine 32, consequently suppressing pro-inflammatory gene
expression. Additionally, curcumin activates AMPK and disrupts
the NF-«xB pathway by acting on p65. During 1AV (Influenza virus
A) infection in macrophages, curcumin prevents NF-kB and p65
translocation to the nucleus, reducing pro-inflammatory cytokine
gene transcription (Swatson et al., 2017).
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Figure 4: Molecular targets, anti-inflammatory and antioxidant mechanisms of curcumin.



9. Anti-inflammatory effect of curcumin via neutralizing
reactive oxygen species

Oxidative stress and inflammatory responses are closely intertwined.
The imbalance between reactive oxygen species (ROS) production
and reduced antioxidant reactivity characterizes oxidative stress. ROS
overproduction disrupts essential cellular functions and damages
cell proteins, nucleic acids, and lipids at a structural and functional
level. Accumulation of ROS leads to oxidative stress, amplifying
inflammation by activating associated transcription factors. Curcumin,
through its impact on NADPH oxidase and enhanced antioxidant
enzyme activity, mitigates ROS generation and acts on the Nrf2-
Keapl pathway, resulting in its anti-inflammatory properties
(Munevver and Akram 2016; Derochette et al., 2013). Curcumin
contains two active groups: the hydroxy hydrogen on the benzene
ring, which exhibits antioxidative properties, and the diketone moiety.
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In vitro studies have demonstrated curcumin’s effectiveness in
scavenging superoxide anion radicals generated by riboflavin
illumination and OH produced by the Fenton reaction, showcasing
its potential in ROS removal and antioxidation (Srivastava et al.,
2016). Curcumin indirectly scavenges ROS through enzymatic
regulation. For instance, it can activate the crucial enzyme superoxide
dismutase (SOD), which converts O, to H,0, and eventually to H,O
via the glutathione (GSH) redox system (Sies and Jones, 2020). In a
study on rat liver injury, the folic acid antagonist Methotrexate was
found to inhibit the GSH redox system, resulting in hepatic oxidative
damage. Curcumin counteracts this effect, enhancing SOD’s efficiency
and maintaining the oxidant/antioxidant balance to prevent liver
damage (Sharifi-Rad et al., 2020). Additionally, curcumin inhibits
thioredoxin interacting protein/NLR pyrin domain containing 3
(TXNIP/NLRP3), further attenuating the effect of ROS on the
expression of pro-inflammatory cytokines like IL-1b and IL-18.

Table 1: Effect of curcumin on various inflammatory mediators

Role of curcumin on different transcription factors

Transcription factors

Outcomes

References

1. Inflammatory cytokines

Excessive synthesis of pro-inflammatory cytokines, including TNF-a.,
IL-1, and IL-6, significantly contributes to the onset of both localized
and systemic inflammation in cases of severe infection or after major
injuries. This heightened production can lead to severe pathophysiolo-
gical disruptions and organ failure. Various studies have indicated that
curcumin effectively modulates the production of diverse inflammatory
cytokines, showcasing its potent anti-inflammatory properties.

Munford and Pugin, 2001;
Abe, 1999

2. Growth factor and
protein kinase

The plasma membrane protein kinase EGFR (Epidermal Growth Factor
Receptor) holds significant importance, as dysregulation in EGFR signa-
ling is implicated in various cancers including breast, lung, colorectal,
and head and neck cancers. The EGFR pathway plays a pivotal role

in cancer cell growth, migration, survival, angiogenesis, and invasion.
Curcumin effectively inhibits EGFR signaling by preventing EGFR
tyrosine phosphorylation and suppressing EGFR gene expression,
mediated by the activation of PPAR-y. Additionally, curcumin down-
regulates the expression of numerous pro-angiogenic growth factors
such as VEGF and FGF, and it may directly impede angiogenesis.

Ahmed et al., 2006;
Korutla and Kumar, 1994

3. Enzymes

Curcumin has been found to modulate several enzymes closely
associated with cancer and inflammation, including COX-2, iNOS,
5-LOX, and PLA2. It effectively reduces both COX-2 mRNA and
activity in both in vitro and in vivo settings. Curcumin also

strongly suppresses IMPDH (Inosine Monophosphate Dehydrogenase)
activity, leading to a reduction in cellular GTP levels within HT-29
colon carcinoma cells. IMPDH is pivotal in the de novo biosynthetic
reaction that converts inosine monophosphate into xanthosine
monophosphate. Increased IMPDH enzyme expression or activity is
linked to heightened cellular proliferation and a propensity for
malignant transformation.

Chun et al., 2003;
Kunnumakkara et al., 2007

4. Apoptosis related
enzymes

Disruption of apoptosis regulation can lead to inflammatory, degene-
rative, and cancerous ailments. Curcumin not only induces apoptosis in
various human cancer cell types but also impedes tumor growth and
promotion in animal models. Its mechanisms include the release of
cytochrome c, activation of caspase-3, and downregulation of anti-
apoptotic Bcl-XL and IAP proteins.

Zhou et al., 2011;
Jee et al., 1998

5. Other targets

The p53 gene plays a crucial role in cell cycle regulation, tumor sup-
pression, and activation of apoptosis. Curcumin treatment has been
found to lead to the overexpression of the p53 gene, consequently
inducing apoptosis in diverse cell types.

Bae et al., 2003; Michael
et al., 1995
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TNF-o: Tumour necrosis factor alpha, IL-1B: Interleukin 1 beta,
EDGRG; Epidermal growth factor receptor PPAR-y: Peroxisome
proliferator-activated gamma receptor, VEGF: Vascular endothelial
growth factor, FGF: fibroblast growth factor COX 2: Cyclooxygenase
2,iNOS: Inducible nitric oxide synthase NF-kB: LOX: Lipooxygenase,
PLA2: Phospholipases A2, IMPDH: Inosine monophosphate
dehydrogenase, GTP: Guanosine, triphosphate, IAP: Inhibitor of
apoptosis protein.

10. Conclusion

We have extensively explored various aspects concerning the genetic
alterations in hepatocyte cells and their relationship with the hepatic
microenvironment in the context of HCC development. It is
imperative to comprehensively characterize these components within
the liver microenvironment to pave the way for effective novel
therapies targeting both the tumor and its microenvironment. This
approach is vital to mitigate the reciprocal influence they exert on
each other and to forestall the phenomena of recurrence and resistance
commonly associated with current HCC treatments. Remarkably,
several inflammatory variables in the microenvironment have been
identified, presenting promising targets for potential therapeutic
interventions. In this regard, numerous immunomodulatory drugs
are presently undergoing clinical testing for HCC, either as standalone
treatments or in combination with existing therapies. Our findings
underscore that the inflammatory response is an actively dynamic
process, intricately involved in carcinogenic events and responsive
to them. Moreover, it stands as a promising and viable target for
novel treatments, furthering our quest for effective HCC management
and improved patient outcomes.
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