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Abstract
Alzheimer’s disease (AD) is a progressive neurodegenerative disease (ND) and the most prevalent cause of
dementia. Acetylcholinesterase (AChE) is the primary cholinesterase responsible for catalyzing the breakdown
of acetylcholine and other choline esters that function as neurotransmitters in the body. Given that
Alzheimer's disease is a neurological disorder, AChE is thought to play a crucial role in its pathogenesis. On
the basis of available literature from neuroprotective plants, a list of 100 secondary metabolites has been
compiled. Out of 100 compounds, only forty have drug like properties, and out of these ten, only four
satisfy the ADMET criteria. These four are docked against the AChE receptor and validated using redock
docking. Kanzonol R (Isoflavonoid) showed significant binding affinity with a binding energy of –10.67
kcal/mol as compared to the redock complex. Kanzonol R has the highest binding affinity and is thus
subjected to a complex stability study using molecular dynamics over 100 ns. Kanzonol R outperformed
the other compounds and the redock crystal structure in terms of binding affinity and structure stability.
The MM-PBSA analysis also shows Kanzonol R and AChE having stable interactions throughout the 100 ns
trajectory, and therefore, Kanzonol R may be used as a potent inhibitor of AChE in AD management.
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1. Introduction

In the process known as neurodegeneration, the progressive loss of
a neuron’s structure or function results in neurodegenerative diseases.
Cell death may eventually result from such neuronal damage.
Neurodegenerative diseases are crippling, incurable conditions that
cause nerve cells to gradually deteriorate and die (Huang et al., 2020,
Davenport et al., 2023). Huntington, Alzheimer, and Parkinson
diseases, along with conditions like amyotrophic lateral sclerosis
and multiple sclerosis, are examples of neurodegenerative conditions.
The most prevalent neurodegenerative illnesses are Parkinson’s and
Alzheimer’s diseases (AD). The consequences of AD often manifest
later in life, and at 65 years of age, its frequency generally doubles
every 5 years (Marucci et al., 2021).

Furthermore, as life expectancy rises, so does the prevalence of AD
and other age-related disorders. AD is by far the most prevalent kind
of dementia (Poddar et al., 2021), accounting for roughly 70-80% of
cases. More than 50 million individuals are already affected by this
condition, and as we approach the middle of the 21st century, this
figure is anticipated to drastically increase (Andrade-Guerrero et al.,
2023). Throughout the study, the incidence (147.95%), prevalence
(160.84%), and mortality rate (189.29%) of dementia increased
significantly. In 2050, it is anticipated that there would be 152.8

million cases worldwide (GBD 2019; Dementia Forecasting
Collaborators, 2022; Dos Santos et al., 2018).

Several enzymes are involved in the progression of AD; in our study,
we focused on acetylcholinesterase (AChE), a major neurotransmitter.
Acetylcholine (ACh), a naturally occurring neurotransmitter, is
rapidly broken down into acetic acid and choline by hydrolysis.
Since the cholinergic deficit in AD was identified, AChE has been
extensively studied in the tissues affected by the disease.

In the course of cholinergic transmission, the neurotransmitter AChE
is released from nerve fibres. This neurotransmitter sends the message
to trigger a response by attaching to certain receptors on other
cholinergic nerve fibres. Memory problems have been observed in
individuals with AChE inhibitors and have been linked to damage to
the cholinergic neurotransmission that produces acetylcholine
(Cipriani et al., 2011). The cholinesterase enzymes reduce the amount
of ACh by hydrolyzing the molecule, especially AChE, which is
found in the synaptic cleft of cholinergic neurons (Silman, 2021).
These enzymes are bound by cholinesterase inhibitors, which raise
the concentration of ACh in the synapses (Stanciu et al., 2020).
Based on the discovery that disruption of cholinergic pathways in
the cerebral cortex and basal forebrain leads to the cognitive
impairment of AD patients, AChE inhibitors have been created.
Reduced ACh breakdown and subsequent ACh buildup are the effects
of AChE inhibition. The increased stimulation of the muscarinic and
nicotinic receptors brought on by this additional ACh aids in treating
AD’s memory issues (Santos et al., 2018). AChE inhibitors can
penetrate the blood brain barrier (BBB) to varying degrees. Commonly
prescribed medications with good BBB penetration for AD include
donepezil, rivastigmine, and tacrine.
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In 1996, AD therapy with donepezil was authorized. In addition,
rivastigmine has easy permeability to the BBB as it is a small molecule.
In the year 2000, it was licensed for the treatment of Parkinson’s-
related dementia as well as also approved for AD management
(Reingold et al., 2007). Galantamine was approved for the treatment
of mild to moderate AD in February 2001. Tacrine was the first
medication authorized in 1993 for the treatment of AD and is a
significant AChE and BuChE inhibitor. Later on, it was discontinued
as it was causing liver toxicity. These inhibitors cause several
toxicities, so there is an urgent need for an inhibitor from natural
sources that would be less toxic or nontoxic. In this attempt, a
screening of plant derived metabolites was performed to evaluate
their druggability and inhibitory effect against AChE a key target of
AD.

2. Material and Methods

2.1 Preparation of protein

The protein was retrieved from RCSB database of PDB ID 4M0E and
was modified by using discovery studio. The AChE structure was
determined by the X-ray diffraction having a resolution of 2Å and
zero mutation. The structure is pre-processed before docking by
removing the HETATMs, which include water residues, ions, and
other small molecules, to prevent steric clashes. All the pre-processing
is achieved by using Discovery Studio. The Kollmann charges were
applied to the modified structure and later solvated using the
AutoDock tool to obtain the final structure of the biological target
protein (Sharma et al., 2018).

2.2 Preparation of ligand

In our study, we have compiled a library of hundred secondary
metabolites that are the result of a comprehensive survey through
literature studies. The metabolites that are reported to have
neuroprotective properties were incorporated into this study. The
structures of these ligands were obtained in sdf format from the
PubChem database. The protein structure in PDB format was
obtained through Discovery Studio. The ligand was also pre-
processed before being subjected to molecular docking studies.
Initially, the ligand is energy minimized, followed by optimization
by applying partial charges (MMFF94x and gasteiger) and the
CHARMM force field. During the energy minimization step, a gradient
energy of about 0.001 kcal/mol was used while leaving the other
parameters at their default values. Ligand processing was also achieved
by utilising the AutoDock tool (Sharma et al., 2018).

2.3 Pharmacokinetic analyses

2.3.1 Lipinski’s rule of five

The early-stage identification of the small molecules with drug-like
characteristics provides greater help in the drug development
procedure as it prevents unnecessary expense, time, and in vitro
analysis in the traditional approach to drug development. The
compiled compounds were screened using Lipinski’s filters. Using
the online software Molinspiration (http://www.molinspiration.
com/), we determine whether the compounds are drug-like or not.
The attributes of the drug likeness filter include the molecular weight
of the molecules (<50 kDa), the number of hydrogen donors (>5)
and acceptors (<10), and the logP of the compounds (also known as
the partition coefficient, i.e. (<5). If, the secondary metabolites fail

to follow these parameters or have more than 1 violation, they are
regarded as having poor oral bioavailability and hence are removed
for further studies (Lipinski et al., 2012).

2.3.2 ADME\tox properties

The ADME and toxicity assessment is an important parameter in
determining a drug’s therapeutic potential against a disease. The
compounds that obey the Lipinski criteria are further subjected to
ADME and toxicity studies by exploiting the web tool PreADMET
server (http://preadmet.bmdrc.org/). This server computes the
pharmacokinetic parameters in terms of human intestinal absorption
(%HIA should be more than 90%), CaCO2 cell permeability (Pcaco-
2 should be between 40 to 70%), Maden Darby canine kidney
permeation (PMDCK should be between 25-70%), skin permeability
(PSkin between –1.0 to –8.0), plasma protein binding (PPB should be
less than 98%), penetration of the BBB (above 1), non-inhibitor for
cytochrome CYP2D6 and no computed toxicity, i.e., mutagenicity
and carcinogenicity. The secondary metabolites that have computed
ADME/tox values within the defined range are filtered for further
docking analysis.

2.4 Molecular docking analysis

A molecular docking analysis was conducted with the prepared
receptor and ligand by Auto Dock 4.2 to calculate binding affinities
and hydrogen bond interactions. The algorithm of the exhaustive
search Lamarckian Genetic Algorithm was executed to perform the
docking function (to provide the best 10 conformers for each inhibitor
molecule) for estimating the free energy of binding and inhibition
constant (Ki) (Allouche, 2011). For all targets, the grid was prepared
according to the binding pockets of the AChE protein, so that the
active site residues are within the grid area while keeping other
parameters at default (Sharma et al., 2022). The AChE binding site
has two subsite one that contains a catalytic triad of SER203, GLU334
and HIS447 residues. While, the second anionic catalytic site (choline-
binding region) is responsible for the AChE breakdown into choline
and acetate within the esteratic  subsite. The metabolites were
subjected to screening based on their free binding energy, Ki,
involvement of interaction residues, and hydrogen bonds (Morris et
al., 2009). In order to determine the ligand configurations and
positions generated by the molecular docking, redocking studies were
used to confirm the docking methodology and variables. This may
offer the plausible and legitimate way of possible binding between
the co-crystal ligand and the target protein. Consequently, on the
native protein, the capacity of the ADT to duplicate each ligand’s
location and orientation in a manner comparable to that of the co-
crystal ligand was assessed. The crystal structure with the lowest
RMSD value was taken into consideration for further analysis. The
best docked findings were utilized to construct the structure with
the highest binding affinity using Pymol and the Discovery Studio
Visualizer 3.5 (Sharma et al., 2018).

2.5 Molecular dynamics simulation (MDS)

The complex with the best binding affinity against the AChE protein
is further evaluated for its stability using the MDS study. The
investigation was done by the Groningen Machine for Chemical
Simulations (GROMACS 5.1 package) (Abraham et al., 2015). To
begin the simulation study, the all-atom CHARMM force field must
be used to generate the topology of both the receptors and the
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ligands. The all-atom CHARMM-27 force field from GROMACS is
used to create the receptor protein topology files, whereas the
SwissParam online server tool is used to create the ligand topology
files (Zoete et al., 2011). A 3.0-nm separation of water model points
(TIP3P) which were constructed from the target protein to the box’s
faces, was established to maintain the MDS under the conditions of
a periodic boundary (Price et al., 2004). To prevent collisions between
protein molecules, SPC water molecules were used in a dodecahedral
model box with exterior edges and a margin of 10 Å (Glättli et al.,
2002). In order to maintain the maximum force less than 1000 kj/
mol/nm, the solvated system is neutralized by sodium ions in every
simulation technique, and the steric conflicts of the system are avoided
by executing the steepest energy minimization of roughly two
thousand steps. Particle Mesh Ewald (PME) was exploited to
compute the electrostatic interaction at larger distances, and the
bond length was constrained utilizing the LINCS (linear constraint
solver) algorithm (Darden et al., 1993). The non-bonded Van der
Waals interaction is calculated at a threshold of around 1.0 nm (Hess
et al., 1997). Moreover, the system is calibrated at 300 K under NVT
and NPT for 1000 picoseconds (ps) at a pressure of 1 bar (constant
particle number, volume, and temperature). Using a velocity-rescaling
thermostat, 300 K of temperature coupling was attained with a
constant time of 0.1 ps (Bussi et al., 2007). The Parrinello-Rahman
barostat’s given approach was used at a constant time of 1 ps to
determine the 1 bar pressure (Parrinello and Rahman, 1981). The
protein-ligand system was then put through a 100 ns dynamic
simulation. Every two femtoseconds (fs) at each phase, a leap-frog
integrator was employed, and the dynamic results’ coordinates were
stored for further analysis. Using the GROMACS gmx modules, the
analysis of RMS, RMSF, gyrate, H-bond, and SASA was assessed.
The MDS graphs were plotted using the XMgrace tool.

2.6 MMPBSA and per-residue contribution

The free binding energy of the complex system, i.e., between the
AChE protein and the active molecules is determined by exploring
the MM-PBSA (Molecular Mechanics-Poisson-Boltzmann Surface
Area) methodology (Kumari et al., 2014). MM-PBSA that is used to
assess the binding free energy (“Gbind) is computed by using the
below mentioned equations:

DGbind = TDS   DEmm + DGsolv – TDS

DEmm = DEint + DEelec – DEvDw

DGsolv = DGelecsolv + DGvDwsolv

The TDS represents the entropy contribution of the system along
with the energy of the total gas phase, as demonstrated by the
DEmm. Similarly, the free solvation energy is represented by DGsolv.
To compute the component of the electrostatic energy of a solvation
in a continuum solvent, the Poisson-Boltzmann method is employed.
The non-polar solvation energy may be exploited to estimate the
solvent-accessible surface area (Lee and Olson, 2013). The energy
contribution of amino acid residues within 5Å of the ACHE active
site was calculated by analyzing the decomposition of each
residue. The assessment of energy contribution per residue helps in
understanding the interactions between the inhibitor molecules and
the proteins, along with their backbone atoms and side chains. The
residues involved in the catalytic triad of AChE subsite and the
active pocket containing residues (TYR124, SER125, SER203,
TRP286, SER293, VAL294, PHE295, PHE297, TYR337, PHE338,
TYR341 and HIS447) were assessed for this analysis.

3. Results

3.1 Study of pharmacokinetic properties and drug likeness

The potential of a drug to penetrate or be absorbed by the human
body across the bilayer of phospholipid was evaluated by the Lipinski
attributes, which also affirm the oral bioavailability of the molecules.
In this study, we have compiled 100 compounds that were subjected
to drug likeness analysis and screened on the basis of fulfilling the
parameters of Lipinski’s rule of five by using the online software
molinspiration. Among all 100 compiled compounds, only 40
compounds fulfilled the drug likeness parameters, with a total of zero
violations. The compounds obeying the rule of five are considered to
have high bioavailability with significant oral absorption potential.
The screened compounds with zero n-violation (i.e., 40) were filtered
and subjected to ADME/Tox assessment with an online software
program called PreADME/Toxicity.

On the basis of this pharmacokinetic study, only 4 compounds out
of 40 fulfilled all the descriptors of ADME/Tox. All four of the selected
compounds have high HIA, MDCK, and Caco-2 absorption with
selective skin permeation along with high BBB and PPB distribution,
making them good agents against neuro-targeting. The selected
candidates also showed non-inhibitory properties against CYP2D6.
Furthermore, no toxicity is predicted for the compounds kanzonol
R and racemosol. However, the compounds sabinene and quindoline
were shown to be mutagenic but not carcinogenic in animal models.
Hence, these four compounds were subjected to docking analysis to
determine the best potent inhibitor for the AChE protein (Table 1).

Table 1: ADME/Tox properties of selected compounds and standard drugs

S.No. Compound             Toxicity Absorption Distribution Metabolism

n a m e Mutagenicity Carcinogenicity HIAa CaCo-2 b MDCKc PSkin
d PPBe BBB f CYP2D6g

1. Quindoline Mutagen Non-carcinogen 98.99 41.34 226.7 -3.098 87.82 1.434 Non

2. Racemosol Non-mutagen Non-carcinogen 93.57 40.88 125.63 -2.584 100.0 3.200 Non

3. Sabinene Mutagen Non-carcinogen 100.0 23.49 300.5 -1.367 60.97 5.756 Non

4. Kanzonol R Non-mutagen Non-carcinogen 93.97 33.04 O.046 -2.676 99.82 3.127 Non
a Percentage of human intestinal absorption, b Cell permeability (CaCo-2 in nm/sec), c Cell permeability Maden Darby Canine Kidney in nm/sec,
d Skin permeability (nm/sec), e Percentage of plasma protein binding, f Blood Brain Barrier (CBrain/CBlood), g Cytochrome P450 2D6 binding.
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3.2 Molecular docking analysis

The molecular docking results are summarized in Table 2. All the
selected compounds docked with the target AChE. Kanzonol R
showed the best binding affinity with a binding energy of -10.67
kcal/mol with the AChE protein target as compared to other
compounds and the redock co-crystal ligand (NAG). The native co-
crystal ligand has an interaction energy of about –6.46 kcal/mol with
18.38 uM of Ki. The residues involve in the interaction between the
NAG and the AChE protein includes SER203, PHE338, and HIS447.
The compounds quindoline and racemosol also have a binding energy
higher than the native ligand (NAG) but higher Ki value. While sabinene

shows the lowest binding potential as compare to the other inhibitor
molecules and the NAG (Table 2). The interaction residues of each
complex were evaluated, and the analysis showed that all the inhibitor
molecules interacted with the same residues of the AChE as with the
NAG-AChE interaction pocket (Figure 1 a and c). The docking
analysis demonstrated that kanzonol R has a significant binding
potential, as evidenced by its interaction with similar residues in the
binding pocket of AChE as the redock ligand (TRP286, LEU289,
GLU292, SER293, VAL294, PHE295, ARG296, PHE297, PHE338
and TYR341). In addition, kanzonol R also exhibited two similar
hydrogen bonds (with TYR341 and PHE295) as the redock
conformation (Figures 1 b and d).

Table 2: Results of molecular mocking analysis binding energy, inhibition constant and interactive amino acids

S.No. Compounds Binding energy Ki (µM) Interacting amino acid Amino acids involve in
(kcal/mol) hydrogen bond formation

1. Redock (NAG) -6.46 18.38 TRP286, LEU289, GLU292, SER293, TYR341, ARG296, SER293
VAL294, PHE295, ARG296, PHE297, and PHE295
PHE338 and TYR341

2. Quindoline -8.59 508.94 GLN71, TYR72, VAL73, ASP74, TYR337
TRP86, ASN87, PRO88, GLY120,
GLY121, TYR124, SER125, GLY126,
TYR133, GLU202 and TYR337

3. Racemosol -8.69 423.70 TYR72, TYR124, TRP286, LEU289, PHE295
SER293, VAL294, PHE295, ARG296,
PHE297, TYR337, PHE338 and
TYR341

4. Sabinene -5.83 53.37 TRP286, SER293, VAL294, PHE295, None
ARG296, PHE297, PHE338 and
TYR341

5. Kanzonol R -10.67 73.88 TYR124, SER125, SER203, TRP286, TYR124, PHE295, TYR337
SER293, VAL294, PHE295, PHE297, and TYR341
TYR337, PHE338, TYR341 and HIS447

Figure 1: The 3D and 2D structure of the best docked conformer of the redock (NAG)
ligand (a) and (c) and the Kanzonol R (b) and (d) with the AChE protein.
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3.3 MD simulation

We conducted a 100-ns MD simulation to comprehend the stability
of the complex system as well as the dynamics of the binding complex
of the bioactive compound (kanzonol R) and the AChE protein. A
change in the protein’s conformation also occurs during simulation
when the ligand molecules are bound to the active sites of the protein.
The trajectories generated from the simulation results were utilized
to compute the RMSD (root mean square deviation) and RMSF (root
mean square fluctuation) of the backbone along with the protein’s
radius of gyration (Rg) to evaluate the structural deviation of the
system and the changes in the compactness of the protein during the
simulation. The computed average RMSD of the redock-cocrystal
ligand (NAG) with the AChE protein was about 0.164 ± 0.015 nm,
while for the system containing the inhibitor compound (kanzonol
R), it was about 0.154 ± 0.016 nm) The NAG-AChE system shows
an increased structural deviation until 30 ns, followed by constant
RMSD values showing a convergence in the RMSD plot, representing
a system reaching equilibrium. Similarly, the bioactive compound
and protein system (kanzonol-AChE) also has an increased
fluctuation in the RMSD value until 35 ns, after which the system
converges to equilibrium. The RMSD plot shows that the kanzonol-
ACHE trajectories are comparatively more stable than the NAG-
AChE trajectories during the 100-ns run, as they have comparatively

less fluctuation in the deviation (Figure 2 a). The RMSF plot suggested
a magnitude of fluctuation in the residues of AChE proteins upon the
binding of the active compound. The RMSF plot demonstrated that
the binding of the inhibitor ligand (NAG) causes an increase in the
residual fluctuation as compared to the co-crystal ligand interaction
with the AChE (Figure 2 b). The increased fluctuation in the RMSF
plot represents the inhibitor compound (kanzonol R) having an
increased flexibility after binding with protein, which also confirms
the system’s stability. 

Furthermore, the compactness of the protein after the binding of the
ligand molecules is also evaluated using the parameter of radius of
gyration (Rg) for the 100 ns trajectories. The co-crystal ligand (NAG)
and kanzonol R have an average Rg value of about 2.327 ± 0.007 nm
and 2.325 ± 0.006 nm, respectively. The averages for both trajectories
were computed to be almost equal. The Rg values of the NAG trajectories
showed a rise in the deviation till 15 ns, representing the loose packing
of the protein, followed by a slight rise and constant deviation value of
Rg till 80 ns, which further declined after 90 ns. However, the inhibitor
system showed a fluctuation in the Rg values until 30 ns, after which
it maintained the constant deviation in the Rg values until 100 ns
(Figure 2 c). The Rg plots showed that kanzonol R had a stable,
compact, and tightly bound behavior of the protein structure during
the 100 ns simulation as compared to the NAG trajectories.

Figure 2: The plot representation of (a) RMSD, (b) RMSF and (c) Rg (radius of gyration) of the redock (NAG) ligand and kanzonol
R complex system with AChE protein (NAG system represented with black and kanzonol R with red color) .
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3.4 MM-PBSA and residue contribution

The algorithm of molecular mechanics in MM-PBSA was employed
to predict the binding free energies in order to determine the stability
of the interactions between the bioactive molecules and the AChE
protein. The MM-PBSA algorithm generates the energies in terms of
van der Waals, polar solvation, electrostatics, and SASA, whose

summation provides the total interaction energy involved in the
complex formation. Our selected ligand kanzonol R as compare to
the NAG shows the best interaction potential with the AChE protein,
as it has the lowest total binding energy (–195.284 ± 16.391 kJ/mol).
For both complex systems, van der Waals and electrostatic
interactions contribute the most energy to complex formation.

Table 3: Involvement of various energy parameters in the formation of the complex with protein
AChE and ligands (NAG and kanzonol R)

MM-PBSA energy parameters (kJ/mol) Co-crystal ligand (NAG) Kanzonol R

Total binding energy -124.711 ± 16.290 -195.284 ± 16.391

Van der Waals -111.218 ± 9.048 -207.967 ± 12.809

Electrostatic -119.977 ± 23.551 -69.743  ± 20.336

Polar solvation 118.696  ± 14.921 104.735  ± 17.804

SASA -12.212  ± 0.784 -22.308  ± 0.958

Figure 3: Bar graph representation of per-residue in energy contribution for NAG and kanzonol R system.

The involvement of the residues SER203, GLU334 and HIS447 in
complex formation was also investigated using residue decomposition.
The NAG and AChE interaction system trajectories show the favorable
interaction of residues SER203 (– 0.077 kcal/mol) and GLU334 (–
0.262 kcal/mol). While for kanzonol R, the residue GLU334 (–1.7598
kcal/mol) shows a favorable energy contribution in the binding to the
protein target. Furthermore, the residues TYR341 (–15.65 kJ/mol)
and PHE295 (–10.15 kJ/mol) have the most favorable involvement
in the kanzonol-AChE system’s energy contribution. While, for the
redock co-crystal system, TYR341 (– 8.39 kJ/mol), VAL294 (-8.166
kJ/mol), TRP286 (–7.919 kJ/mol), and PHE295 (– 7.38 kJ/mol) have
the most significant and favorable contributions (Figure 3).

4. Discussion

When there is an interruption in the signaling among synapsis, this
result in the excess production of the neurotransmitter named AChE
(plays important role in the neurodegenerative disease called AD)
which is the major concern of our study. As a result, secondary

metabolites are extensively studied due to their no or less toxic
against human responses.

Most of the drugs failed due to poor pharmacokinetic analysis, In
this context we screened out the bioactive metabolites for their
pharmacokinetic properties. Furthermore, selected compounds were
anlyzed for their binding affinity against the ke target of AD by
molecular docking approch. computational method, molecular
docking, is widely used to elucidate the mechanism of action and
rationalize structure activity relationships of natural products.

The aim of docking is to accurately predict the positioning of a
ligand within a protein binding pocket and to estimate the strength
of the binding with a docking score (Allahbi and Singh, 2022).
Computational methods also provide the means to discover
previously undescribed binding sites on known protein structures.
Pocket finders detect solvent-accessible cavities in the protein surface
that can indicate potential ligand binding sites.
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Among the the selected metabolites (Table 2) kanzonol R exhibited
significant binding affinity in the active site of AChE. Kanzonol R is
a flavonoid compound in a class of organic compounds having 5-O-
methylated iso-flavonoids. This compound is reported to have been
isolated from the Glycyrrhiza glabra L. (licorice) plant (Hussain et
al., 2014; Batiha et al., 2020; Irani et al., 2020). Licorice has been
extensively studied for its chemical composition and pharmacological
activities (such as cytotoxic activity, antioxidant potential, anti-
inflammatory, anticancer, antimicrobial, and many more) owing to
the presence of a wide spectrum of bioactive compounds, including
kanzonol R (Sharma et al., 2017; Nomura et al., 2002). However, the
compound kanzonol R has not yet been evaluated against
neurodegenerative diseases. AD is a neurological disorder (Sekeroglu
and Gezici, 2019). Hence, this study gives an insight into the
probability that this isoflavonoid will be an effective agent for
targeting neurodegenerative diseases after its further in vitro and in
vivo validation. Among the selected four secondary metabolite,
kanzonol R ranked best in all computational analysis done in our
study. Furthermore, our study revealed that kanzonol R can be a
powerful deterrent of our targeted protein AChE and aids in the
development of new Alzheimer’s drug.

5. Conclusion

Compounds that will inhibit the enzyme AChE in AD brain are
potential therapeutic agents. On the basis of the pharmacokinetic
study, kanzonol R was found to fulfil all the tested descriptors for
both duggability and ADME/Tox. Furthermore, molecular docking
results indicated that kanzonol R binds significantly in the conserved
sites of AChE and exhibits stable dynamic behavior over a 100-ns
trajectory. Thus, it is worth carrying out further investigations into
its neuroprotective properties both in vitro and in vivo to optimize
it as an anti-neurodegenerative agent to treat conditions like AD.
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