Original article

In vitro bile acid sequestering properties of Morus indica L. leaves

P. Vanitha Reddy and AsnaUrooj

Department of Studies in Food Science and Nutrition, University of Mysore, Mysore-570006, Karnataka, India

Received November 1, 2017: Revised December 25, 2017: Accepted January 5, 2018: Published online June 30, 2018

Abstract

Binding of bile acids and increasing their fecal excretion have been hypothesized as a possible mechanism to lower cholesterol. Also, bile acid binding potential has been related to lowering the risk of heart disease and that of cancer. In the present study, leaves of three varieties of Morus indica, viz., M5, V1 and S36 were studied for the bile acid binding capacity (BABC) at different concentrations (200, 400 and 600 mg) and compared with cholestyramine, diosgenin, xanthan gum, guar gum and wheat bran. The BABC was determined by hydration and dialysis diffusion method. The total fiber content was in the order of V1 > M5 > S36. The saponins content ranged from 103 and 7 (1): 96-100 (2018), 2000). Among varieties, lipid lowering capabilities than p0.05). Among varieties, and Bile acid, dietary fiber, saponins, cholic acid 1989) and cholysteramine bind bile acids in the significantly (2008). Fiber exhibits 0.05) than that of wheat bran. The results indicated Morus possess better BABC than standards and can be promoted as natural source of saponin and fiber expressing the mechanisms for the lipid lowering properties.

Key words: Bile acid, dietary fiber, saponins, cholic acid

1. Introduction

Dietary factors profoundly influence lipoprotein levels and metabolism, which, in turn, alter an individual’s susceptibility to atherosclerosis. Several major dietary factors have been identified including fat, CH, fiber, phytoestersols, protein, alcohol consumption, and energy balance (Hegsted et al., 1965). Plasma cholesterol levels are determined by inputs from both diet and de novo biosynthesis, utilization of cholesterol, especially in the liver and steroidogenic tissues and excretion of either cholesterol or bile acids (Izzat et al., 2000). Dietary fiber is an additional factor influencing CH (Rideout et al., 2008). Fiber exhibits CH-lowering action by at least three mechanisms, one of which is bile acid sequestration within the small intestine. Hypercholesterolemia induces oxidative stress leading to generation of reactive oxygen species (ROS) which plays a key role in coronary artery disease (CAD) and atherosclerosis, that affects millions of people annually throughout the world (Izzat et al., 2000; Steinberg, 1997; Tiwari, 1999). Reducing plasma cholesterol levels is the major public concern. Statins, fibrates, niacin, cholesteramine, etc., are cholesterol lowering drugs and has its own mode of action in reducing the lipid levels. For example, statins act as HMG CoA reductase inhibitors by decreasing liver cholesterol synthesis (Kostner et al., 1989) and cholesteramine bind bile acids in the intestine forming complex with the bile acids. Due to the adverse effects of these drugs, need for an alternative natural drug raised.

A number of plants with potent therapeutic components such as fibers, sterols, saponins, polyphenols, flavonoids, etc., have been investigated for their antihyperlipidemic, antioxidant and antiatherosclerotic properties. These compounds are reported to be beneficial with great variation in magnitude and mechanism of action and, hence have a potential therapeutic value in combating multifactorial atherosclerotic disorders (Nishant et al., 2009). Exploration of the dietary factors and chemical constituents of the plants and pharmacological screening will, thus provide the basis for developing new life saving drugs and functional foods. Phytochemicals such as phenolics, flavonoids, terpenoids, saponins, alkaloids, etc., are the bioactive components present at micro level in our daily diet and have received much attention in disease treatment and due to their in vivo and in vitro lipid lowering capabilities (Morton et al., 2000). M. indica (Mulberry) and M. indica L. (Mulberry tree) of the family Moraceae has been widely cultivated in countries all over the world including temperate to tropical areas. Plant is well explored for antihyperglycemic potency in streptozotocin induced diabetic rats (Andalull and Varadacharyulu, 2003; Devi and Urooj, 2008). It is rich source of phytochemicals, plants antioxidant properties in food and biological substrates, lipid lowering properties such as HMG CoA reductase inhibition using in vitro and ex vivo methods are reported (Reddy and Urooj, 2013; Reddy and Urooj, 2013a). In the present study, as a good source of dietary fiber and phytochemicals.

2. Materials and Methods

All chemicals used were of analytical grade. Cholic acid and dialysis tubes were purchased from Hi Media, Bangalore, India.
2.1 Collection and preparation of samples

M. indica leaves (MI-S36) were collected from Centre for Sericulture Research and Technical Institute (CSRTI), Mysore district of Karnataka, India and subsequently identified by Dr. G. R. Shivanmurthy, Department of Studies in Botany, University of Mysore, Mysore, India. The samples were thoroughly washed under running water, dried overnight (50°C), powdered, passed through 60 mesh sieve (BS) and stored in airtight container at 4°C till further use.

Dietary fiber was estimated by enzymatic AOAC (1995) method and saponins were estimated by Majob et al. (2003) method.

2.2 Bile acid binding by hydration and diffusion method

M. indica leaf sample was taken at different concentrations, 200, 400 and 600 mg and standards - cholesteramine (25 mg), xanthan gum (50 mg), guar gum (50 mg), wheat bran (200 mg), diosgenin (saponin-25 mg) were weighed. To the samples, 10 ml cholic acid solution (15 mM) in phosphate buffer (0.01 M, pH 7) with 1% sodium azide was added. All the contents were transferred into dialysis bag and hydrated for 14 h. After hydration, dialysis bags were transferred into the beaker with 100 ml of phosphate buffer at 37°C and aliquots of 1 ml were collected from dialysate at 0, 30, 60, 120 and 180 min. Aliquots were dried at 50°C and 2% vanillin (200 µl) in alcohol was added and dried again. To the dried contents, 5 ml of 79% ortho phosphoric acid was added and incubated for 30 min at 50°C and was read at 465 nm. The cholic acid diffused was calculated from standard graph. A control was run only with cholic acid without *M. indica* (Adiotomre et al., 1990).

2.3 Heat treatment of *M. indica* samples

The dehydrated leaf powder (2000 mg) of *M. indica* was treated with hot water for 10 min. and was subjected to the above procedure of bile acid binding capacity.

Bile acid retardation index (BARI) (Adiotomre et al., 1990)

\[
\text{BARI} = \frac{\text{Total bile acid diffused from the dialysis bag with sample}}{\text{Total bile acid diffused from dialysis bag without sample}} \times 100
\]

3. Results and Discussion

Dietary fiber and saponin content of the *M. indica* varieties is presented in Figure. The percentage of dietary fiber (g/100 g) was in the order of V1 > M5 > S36 and saponins (mg/100 g) were in the order of M5 > S36 > V1.

Table 1: Bile acid binding capacity of *M. indica* by hydration method

<table>
<thead>
<tr>
<th>CONC.</th>
<th>30 min</th>
<th>60 min</th>
<th>120 min</th>
<th>180 min</th>
</tr>
</thead>
<tbody>
<tr>
<td>15 mmol CA</td>
<td>45 ±0.57</td>
<td>65±10</td>
<td>95±9.29</td>
<td>131±7.76</td>
</tr>
<tr>
<td>MI-M5 (raw)</td>
<td>200 mg+15 mmol</td>
<td>7.9±0.23</td>
<td>475±0.5</td>
<td>62±2.0</td>
</tr>
<tr>
<td>MI-V1 (raw)</td>
<td>400 mg+15 mmol</td>
<td>8.3±0.79</td>
<td>10.7±1.55</td>
<td>16.0±1.69</td>
</tr>
<tr>
<td>MI-S36 (raw)</td>
<td>600 mg+15 mmol</td>
<td>14.7±0.61</td>
<td>24.7±6.4</td>
<td>46.7±2.64</td>
</tr>
<tr>
<td>MI-M5 (Heat treated)</td>
<td>200 mg+15 mmol</td>
<td>7.45±0.10</td>
<td>48.7±0.5</td>
<td>60.6±1.25</td>
</tr>
<tr>
<td>MI-V1 (Heat treated)</td>
<td>400 mg+15 mmol</td>
<td>10.8±0.17</td>
<td>22.9±0.34</td>
<td>32.8±2.74</td>
</tr>
<tr>
<td>MI-S36 (Heat treated)</td>
<td>600 mg+15 mmol</td>
<td>11.8±0.89</td>
<td>18.7±1.58</td>
<td>32.8±0.50</td>
</tr>
</tbody>
</table>

*200 mg of the heat treated samples were taken, values are mean of triplicates, bile acid retardation index, expressed as %, (n = 3); (p ≤ 0.05).
Table 2: Comparison of bile acid binding capacity of M. indica with the standards

<table>
<thead>
<tr>
<th>CONC.</th>
<th>30 min</th>
<th>60 min</th>
<th>120 min</th>
<th>180 min</th>
<th>BARI*</th>
</tr>
</thead>
<tbody>
<tr>
<td>MI-M5</td>
<td>8.3e±0.79</td>
<td>10.7±1.55</td>
<td>16.06±1.69</td>
<td>16.96±1.44</td>
<td>89.24d</td>
</tr>
<tr>
<td>MI-V1</td>
<td>10.8±0.17</td>
<td>22.95±0.34</td>
<td>32.85±2.74</td>
<td>41.7±5.57</td>
<td>65.23a</td>
</tr>
<tr>
<td>MI-S36</td>
<td>13.4±2.64</td>
<td>19.2±4.13</td>
<td>43.45±4.07</td>
<td>43.65±5.50</td>
<td>61.21b</td>
</tr>
<tr>
<td>Chol.</td>
<td>5.32±0.62</td>
<td>10.23±1.95</td>
<td>12.09±1.57</td>
<td>13.21±1.72</td>
<td>88.30cd</td>
</tr>
<tr>
<td>Dios.</td>
<td>4.4±1.73</td>
<td>1.66±1.34</td>
<td>2.13±0.49</td>
<td>3.53±0.46</td>
<td>97.04a</td>
</tr>
<tr>
<td>Xg</td>
<td>1.6±0.13</td>
<td>1.9±1.4</td>
<td>12.9±0.06</td>
<td>24±0.17</td>
<td>79.0b</td>
</tr>
<tr>
<td>GG</td>
<td>23.36±0.77</td>
<td>32.03±0.54</td>
<td>45.70±0.80</td>
<td>77.3±2.12</td>
<td>39.03c</td>
</tr>
</tbody>
</table>

Table 2: Comparison of bile acid binding capacity of M. indica with the standards

(MI-M5, MI-V1, MI-S36-400 mg), Dios-diosgenin (25 mg), Xg-xanthan gum (50 mg), GG-guar gum (50 mg), WB-wheat bran (200 mg), chol. cholestyramine (25 mg). Values are mean of triplicates (n=3). Values carrying different superscripts a, b, c, ... differ significantly.

3.1 Bile acid binding (BAB) capacity

This method is one of the oldest and crude method and only one bile acid, i.e., cholic acid was used as substrate. Different concentrations of free unbound bile acid, i.e., cholic acid diffused from dialysis bags at different time intervals, i.e., from 0 to 180 min. is given in Table1. From the Table 1, it can be observed that the BAB capacity is dose dependent in all the varieties of Morus and at 400 and 600 mg, the BAB was comparable in case of V1 and S36. In M5 variety at 400 mg, the BAB was maximum compared to other samples.

Heat treatment of the Morus leaf powder has resulted in a significant increase in bile acid binding than untreated samples (Table 1).

3.2 Comparison with standards

BAB capacity of the Morus leaf samples compared with the standards - cholestyramine, xanthan gum, guar gum, wheat bran and diosgenin is given in Table 2. The BAB of the Morus was comparable with the standards. Primarily, BAB capacity of M1 variety of Morus was comparable with cholestyramine and xanthan gum. The BAB capacity of guar gum and wheat bran were less than all Morus samples. However, diosgenin pure saponin has showed maximum BAB capacity.

3.3 Bile acid retardation index (BARI)

The effect of fiber and saponins of Morus and other standards on the bile acid binding is indicated by BARI in Figures 2, 3 and 4 where percentage of cholic acid passing into the dialysate is compared with the cholic acid control solution. Figure 2 shows the comparison of BARI between the M. indica varieties where M5 variety at 400 mg is significantly (p ≤ 0.05) higher than the other two variety samples. Heat treatment of Morus leaf powder has significantly (p ≤ 0.05) increased the BARI in all the samples. In case of standards, the BARI of Morus M5, no significant (p > 0.05) difference was observed between the BARI of standards cholestyramine, diosgenin and xanthan gum.

 Serum cholesterol is in part controlled through the enterohepatic circulation of the bile acids. Bile acids are conserved through absorption in the ileum. Serum cholesterol may decrease when there is an increase in the loss of bile acids from the ileum to the cecum and feces (Adiotomre et al., 1990). Dietary fiber and saponins may reduce the absorption of bile acids from ileum and this was modeled here in our system mimicking the GI conditions and by a dialysis method.

Figure 1: Total dietary fiber and saponin content of the M1 dehydrated samples.

Figure 2: Bile acid retardation index (BARI) of the M. indica leaves at different concentrations (mg).

Figure 3: Effect of heat treatment on bile acid retardation index (BARI) of M. indica leaves.

Bile acid binding capacity of a sample can be attributed to its total fiber content (TDF) and phytochemical composition especially saponin content. In the present study, M5 with high saponin content exhibited significantly higher (p ≤ 0.05) BARI than V1 and S36. Here, V1 with high fiber content did not exhibit better BARI than MI-M5 which was rich in saponins, compared to V1 and S36. Such diverse results indicate that both TDF and saponins of the sample could be responsible for showing high bile acid by M5. Compared to non-nutritive fibers, bran, cholestryamine, diosgenin (saponin
standard), the BARI of diosgenin was higher than the other samples, followed by MI-M5 and cholestyramine whose BARI was comparable and significantly higher than Xg, MI-V1, MI-S36, GG and wheat bran. Our results are similar to the observations reported by researcher (Kritchenvsky, 1974), where bile acid binding capacity of non-nutrient natural fibers was lesser than that of cholestyramine.

In the present experiment, the method followed may help in developing a new model in understanding the mechanism more clearly especially the stability of Morus to different chemicals and extreme pH conditions.

4. Conclusion

Development of additional cholesterol-lowering agents with mechanisms of action distinct from statins and cholestyramine will probably be necessary to achieve cholesterol target levels in many individuals. Concurrently, it is essential to arrive at the dietary dosages of the samples with high fiber and saponin showing potent hypocholesterolemic property. In present study, Morus is proved with potent bile acid binding property, further exploring the M. indica as functional food by supplementing in disease specific food formulations basically lipid lowering is needed.

Conflict of interest

We declare that we have no conflict of interest.

References

